
Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 1

 Memory Allocation
Version 06/06/00 09:25 - 2

How do you allocate memory to store your data structures?

• You’re developing object-oriented software for a memory-constrained system.

• You’ve designed suitable data structures for each of your objects.

• You need to store these data structures in main memory

• You need to recycle this memory once the objects are no longer required.

• Different classes – and different instances of a single class – have different allocation
requirements.

When a system begins running, it sees only virgin memory space. A running program,
particularly an object-oriented one, uses this memory as ‘objects’ or data structures, each
occupying a unique and differently sized area of memory. These objects will change with
time: some remain indefinitely; others last varying lengths time; some are extremely transient.
Computing environments need allocation mechanisms to call these structures into being from
the primordial soup of system memory.

For example the Strap-It-On PC uses objects in many different ways. User Interface objects
must be available quickly, with no awkward pauses. Transient objects must appear and
disappear with minimum overhead. Objects in its major calculation engines must be provided
and deallocated with minimum programmer effort. Objects in its real-time device drivers must
be available within a fixed maximum time. Yet processing power is limited so, for example, an
allocation technique that minimises programmer effort can’t possibly satisfy the real-time
constraints. No single allocation approach suits all of these requirements.

At first glance, a particular environment may not appear to provide much of a choice,
especially as many object-oriented languages, including Smalltalk and Java, allocate all objects
dynamically [Goldberg and Robson 1983; Gosling et al 1996; Egremont 1999]. But in practice
even these languages support a good deal of variation. Objects can exist for a long or short
time (allowing run-time compiler optimisations); you can reuse old objects rather than creating
new ones; or you can create all the objects you need at the start of the program. More low-
level languages like C and C++ support even more possibilities. So what strategy should you
use to store your objects?

Therefore: Choose the simplest allocation technique that meets your need.

Analyse each time you allocate an object decide which technique is most suitable for allocating
that object. Generally, you should choose the simplest allocation technique that will meet your
needs, to avoid unnecessarily complicating the program, and also to avoid unnecessary work.
The four main techniques for allocating objects that we discuss in this chapter are (in order
from the simplest to the most complex):

FIXED ALLOCATION Pre-allocating objects as the system starts running

MEMORY DISCARD Allocating transient objects in groups, often on the stack.

VARIABLE ALLOCATION Allocating objects dynamically as necessary from a heap.

POOLED ALLOCATION Allocating objects dynamically from pre-allocated memory
space.

Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 2

The actual complexity of these patterns does depend on the programming language you are
using: in particular, in C or C++ MEMORY DISCARD is easier to use than VARIABLE

ALLOCATION, while languages like Smalltalk and Java assume VARIABLE ALLOCATION as the
default.

What goes up must come down; what is allocated must be deallocated. If you use any of the
dynamic patterns (VARIABLE ALLOCATION, MEMORY DISCARD or POOLED ALLOCATION) you’ll
also need to consider how the memory occupied by objects can be returned to the system when
the objects are no longer needed. In this chapter we present three further patterns that deal with
deallocation: COMPACTION ensures the memory once occupied by deallocated objects can be
recycled efficiently, and REFERENCE COUNTING and GARBAGE COLLECTION determine when
shared objects can be deallocated.

Consequences
Choosing an appropriate allocation strategy can ensure that the program meets its memory
requirements, and that its runtime demands for memory are predictable. Fixed allocation
strategies can increase a programs real-time responsiveness and time performance, while
variable strategies can ensure the program can scale up to take advantage of more memory if it
becomes available, and avoid allocating memory that is unused.

However: Supporting more than one allocation strategy requires programmer effort to implement.
The system developers must consider the allocation strategies carefully, which takes
significantly more work than just using the default allocation technique supported by the
programming language. This approach also requires programmer discipline since developers
must ensure that they do use suitable allocation strategies. Allocating large amounts of memory
as a system beings executing can increase its start-up time, while relying on dynamic allocation
can make memory use hard to predict in advance.

v v v

Implementation
As with all patterns, the patterns in this chapter can be applied together, often with one pattern
relying on another as part of its implementation. The patterns in this chapter can be applied in a
particularly wide variety of permutations. For example, you could have very large object
allocated on the heap (VARIABLE ALLOCATION), which contains an embedded array of sub-
objects (FIXED ALLOCATION) that are allocated internally by the large containing object
(POOLED ALLOCATION). Here, the FIXED ALLOCATION and POOLED ALLOCATION patterns are
implemented within the large object, and each pattern is supported by other patterns in their
implementation.

You can use different patterns for different instances of the same class. For example, different
instances of the Integer class could be allocated on the heap (VARIABLE ALLOCATION), on the
stack (MEMORY DISCARD), or embedded in another object (FIXED ALLOCATION), depending on
the requirements of each particular use.

You can also choose between different patterns depending on circumstance. For example, a
Smalltalk networking application was required to support a guaranteed minimum throughput,
but could improve its performance if it could allocate extra buffer memory. The final design
pre-allocated a pool of five buffers (FIXED ALLOCATION); if a new work item arrived while all
the buffers were in use, and more memory was available, the system dynamically allocated
further buffers (VARIABLE ALLOCATION).

Here are some further issues to consider when designing memory allocation:

Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 3

1. Fragmentation

Fragmentation is a significant problem with dynamic memory allocation. There are two kinds
of fragmentation: internal fragmentation, when a data structure does not use all the memory it
has been allocated; and external fragmentation, when memory lying between two allocated
structures cannot be used, generally because it is too small to store anything else. For example,
if you delete an object that occupies the space between two other objects, some of the deleted
object’s space will be wasted, unless

• the other objects are also deleted, giving a single contiguous memory space;
• you are able to move objects around in memory, to squeeze the unused space out

between the objects; or,
• you are lucky enough to allocate another object that fills the unused space exactly.

If the Memory Manager puts the new block in this space,
there'll be a wasted gap. If elsewhere, then this space
remains.

Allocated MemoryFree Memory

New
block

Fragmentation is difficult to resolve because patterns which reduce internal fragmentation (say
by allocating just the right amount of memory) typically increase external fragmentation
because space is wasted between all the oddly sized allocated blocks of memory. Similarly,
patterns which reduce external fragmentation (by allocating equally-sized blocks of memory)
increase internal fragmentation because some memory will be wasted within each block.

2. Memory Exhaustion

No matter what allocation strategy you choose, you can never have enough memory to meet all
eventualities: you may not pre-allocate enough objects using FIXED ALLOCATION; or a request
for a VARIABLE ALLOCATION from heap or stack memory can fail; or the memory pools for
POOLED ALLOCATION can be empty. Sooner or later you will run out of memory. When
planning your memory allocation, you also need to consider how you will handle memory
exhaustion.

2.1. Fixed Size Client Memories. You can expose a fixed-size memory model directly to your
users or client components. For example, many pocket calculators make users choose one of
ten memories in which to save a value, with no suggestion that the system could have more
memory; many components support up to a fixed number of objects in their interfaces
(connections, tasks, operations or whatever) and generate an error if this number is exceeded.
This approach is easy to program, but it decreases the usability of the system, because it makes
users, or client components, take full responsibility for dealing with memory exhaustion.

2.2. Signal an error. You can signal a memory exhaustion error to the client. This approach
also makes clients responsible for handling the failure, but typically leaves them with more
options than if you provided a fixed number of user memories. For example, if a graphics
editor program does not have enough memory to handle a large image, users may prefer to shut
down other applications to release more memory in the system as a whole.

Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 4

Signalling errors is more problematic internally, when one component sends an error to
another. Although it is quite simple to notify client components of memory errors, typically by
using exceptions or return codes, programming client components to handle errors correctly is
much more difficult (see the PARTIAL FAILURE pattern).

2.3. Reduce quality. You can reduce the quantity of memory you need to allocate by reducing
the quality of the data you need to store. For example, you can truncate strings and reduce the
sampling frequency of sounds and images. Reducing quality can maintain system throughput,
but is not applicable if it discards data that is important to users. Using smaller images, for
example, may be fine in a network monitoring application, but not in a graphics manipulation
program.

2.4. Delete old objects. You can delete old or unimportant objects to release memory for new
or important objects. For example telephone exchanges can run out of memory when creating
a new connection, but they can regain memory by terminating the connection that’s been
ringing for longest, because it’s least likely to be answered (FRESH WORK BEFORE STALE,
[Meszaros 1998]). Similarly, many message logs keep from overflowing by storing only a set
amount of messages and deleting older messages as new messages arrive.

2.5. Defer new requests. You can delay allocation requests (and the processing that depends
on them) until sufficient memory is available. The simplest and most common approach for
this is for the system not to accept more input until the current tasks have completed. For
example many MS Windows applications change the pointer to a ‘please wait’ ikon, typically
an hourglass, meaning that the user can’t do anything else until this operation is complete. And
many communications systems have ‘flow control’ mechanisms to stop further input until the
current input has been handled. Even simpler is batch-style processing, reading elements
sequentially from a file or database and only reading the next when you’ve processed the
previous one. More complicated approaches require concurrency in the system so that one task
can block on or queue requests being processed by another. Many environments support
synchronisation primitives like semaphores, or higher-level pipes or shared queues that can
block their clients automatically when they cannot fulfil a request. In single-threaded systems
component interfaces can support callbacks or polling to notify their clients that they have
completed processing a request. Doug Lea’s book Concurrent Programming in Java [2000]
discusses this in more detail, and the techniques and designs he describes are applicable to most
object-oriented languages, not just Java.

2.6. Ignore the problem. You can completely ignore the problem, and allow the program to
malfunction. This strategy is, unfortunately, the default in many environments, especially
where paged virtual memory is taken for granted. For example, the Internet worm propagated
through a bug in the UNIX finger demon where long messages could overwrite a fixed-sized
buffer [Page 1988]. This approach is trivial to implement, but can have extremely serious
consequences: the worm that exploited the finger bug disabled much of the Internet for
several days.

A more predictable version of this approach is to detect the problem and immediately to halt
the processing. While this will avoid any the program running amuck through errors in memory
use, it does not contribute to system stability or reliability in the long term.

v v v

Specialised Patterns
The following chapter explores seven patterns of memory allocation:

Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 5

FIXED ALLOCATION ensures you’ll always have enough memory by pre-allocating structures to
handle your needs, and by avoiding dynamic memory allocation during normal
processing.

VARIABLE ALLOCATION avoids unused empty memory space by using dynamic allocation to
take and return memory to a heap.

MEMORY DISCARD simplifies de-allocating temporary objects by putting them in a temporary
workspace and discarding the whole workspace at once.

POOLED ALLOCATION avoids the overhead of variable allocation given a large number of similar
objects, by pre-allocating them as required and maintaining a ‘free list’ of
objects to be reused.

COMPACTION avoids memory fragmentation by moving allocated objects in memory to remove
the fragmentation spaces.

REFERENCE COUNTING manages shared objects by keeping a count of the references to each
shared object, and deleting each object when its reference count is zero.

GARBAGE COLLECTION manages shared objects by periodically identifying unreferenced objects
and deleting them.

The following diagram shows the relationships between the patterns.

Fixed
Allocation

Variable
Allocation

Reference
Counting

Garbage
Collection

Memory
Discard

Compaction

Application
Switching

Pooled
Allocation

Memory
Allocation

Memory Limit

Partial Failure

Figure 1: Allocation Pattern Relationships

Possibly the key aspect in choosing a pattern is deciding which is more important: minimising
memory size or making memory use predictable. FIXED ALLOCATION will make memory use
predictable, but generally leaves some memory unused, while VARIABLE ALLOCATION can make
better use of memory but provides less predictability.

See Also
The SMALL DATA STRUCTURES chapter explores patterns to determine the structure of the
allocated objects. COMPRESSION provides an alternative means to reduce the space occupied by
RAM-resident objects.

The SMALL ARCHITECTURE patterns describe how to plan memory use for the system as a
whole, how memory should be communicated between components, and how to deal with
memory exhaustion using PARTIAL FAILURE.

Memory Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 6

Kent Beck’s Smalltalk Best Practice Patterns contain several patterns that describe how
variables should be chosen to minimise object’s lifetimes [Beck 1997].

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 7

Fixed Allocation
Also known As: Static Allocation, Pre-allocation

How can you ensure you will never run out of memory?

• You can’t risk running out of memory.

• You need to predict the amount of memory your system will use exactly.

• You need to allocate memory quickly, or within a given time.

• Allocating memory from the heap has unacceptable overheads

Many applications cannot risk running out of memory. For example the Strap-It-On’s Muon-
based “ET-Speak” communication system must be prepared to accept short messages from
extra-terrestrials at any time; running out of memory while receiving a message could be a
major loss to science. Many other systems have absolute limits to the memory available, and
have no acceptable means for handling out-of-memory situations. For example, what can an
anaesthetist do about a message from a patient monitor that has run out of internal memory?
When the users have no effective control over memory use, running out of memory can become
a truly fatal program defect.

The usual object-oriented approach is to allocate objects dynamically on the heap whenever
there’s a need for them [Ingalls 1981]. Indeed many OO languages, including Smalltalk and
Java, allocate all objects from the heap. Using dynamic allocation, however, always risks
running out of memory. If every component allocates memory at arbitrary times, how can you
be certain that memory will never run out?

It’s certainly possible to estimate a program’s memory use, when designing a SMALL

ARCHITECTURE, but how can you be sure the estimates accurately reflect the behaviour of the
finished system? Similarly, you can test the system with arbitrary combinations of data, but
“testing can be used to show the presence of bugs, but never to show their absence” [Dijkstra
1972] so how can you be sure you’ve found the most pathological case?

Dynamic memory allocation has other problems. Some allocation algorithms can take
unpredictable amounts of time, making them unsuitable for real-time systems. Virtually all
allocation algorithms need a few extra bytes with each item to store the block size and related
information. Memory can become fragmented as variable sized memory chunks come and go,
wasting further memory, and to avoid memory leaks you must be careful to deallocate every
unused object.

Therefore: Pre-allocate objects during initialisation.

Allocate fixed amounts of memory to store all the objects and data structures you will need
before the start of processing. Forbid dynamic memory allocation during the execution of the
program. Implement objects using fixed-sized data structures like arrays or pre-allocated
collection classes.

Design your objects so that you can assign them to new uses without having to invoke their
constructors – the normal approach is to write separate initialisation functions and dummy
constructors. Alternatively (in C++) keep the allocated memory unused until it’s needed and
construct objects in this memory.

As always you shouldn’t ‘hard code’ the numbers of objects allocated [Plum and Saks 1991] –
even though this will be fixed for any given program run. Use named constants in code or
system parameters in the runtime system so that the numbers can be adjusted when necessary.

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 8

So, for example, the ET-Speak specification team has agreed that it would be reasonable to
store only the last few messages received and to set a limit to the total storage it can use. The
ET-Speak programmers allocated a fixed buffer for this storage, and made new incoming
messages overwrite the oldest messages.

Consequences
FIXED ALLOCATION means you can predict the system’s memory use exactly: you can tell how
much memory your program will need at compile time. The time required for any memory
allocation operation is constant and small. These two features make this pattern particularly
suitable for real-time applications.

In addition, fixed allocation minimises space overhead for using pointers, and global overhead
for a garbage collector. Using FIXED ALLOCATION reduces programmer effort when there’s no
need to check for allocation failure. It makes programs easier to test (they either have enough
memory or they don’t) and often makes programs more reliable as there is less to go wrong.

Fixed memory tends to be allocated at the start of the process and never deallocated, so there
will be little external fragmentation.

However: The largest liability of FIXED ALLOCATION is that to handle expected worst case loads, you
have to allocate more memory than necessary for average loads. This will increase the
program’s memory requirements, as much of the memory is unused due to internal
fragmentation, particularly in systems with many concurrent applications.

To use FIXED ALLOCATION, you have to find ways to limit or defer demands on memory. Often
you will have to limit throughput, so that you never begin a new task until previous tasks have
been completed; and to limit capacity, imposing a fixed maximum size or number of items that
your program will store. Both these reduce the program’s usability.

Pre-allocating the memory can increase the system’s start-up time – particularly with
programming languages that don’t support static data.

In many cases FIXED ALLOCATION can increase programmer effort; the programmer is forced
to write code to deal with the fixed size limit, and should at least think how to handle the
problem. It can also make it harder to take advantage of more memory should it become
available, reducing the program’s scalability.

Nowadays programs that use fixed size structures are sometimes seen as lower-quality designs,
although this probably says more about fashion than function!

v v v

Implementation
This pattern is straightforward to implement:

• Design objects that can be pre-allocated.

• Allocate all the objects you need a the start of the program.

• Use only the pre-allocated objects, and ensure you don’t ever need (or create) more
objects than you’ve allocated.

1. Designing Fixed Allocation Objects

Objects used for fixed allocation pattern may have to be designed specifically for the purpose.
With fixed allocation, memory is allocated (and constructors invoked) only at the very start of
the system; any destructor will be invoked only when the system terminates (if then). Rather

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 9

than using constructors and destructors normally, you’ll need to provide extra pseudo-
constructors and pseudo-destructors that configure or release the pre-allocated objects to suit
their use in the program.

class FixedAllocationThing {
public:
 FixedAllocationThing() {}

 Construct() { . . . }
 Destruct() { . . . }
};

By writing appropriate constructors you can also design classes so that only one (or a certain
number) of instances can be allocated, as described by the SINGLETON pattern [Gamma et al
1995].

2. Pre-allocating Objects

Objects using FIXED ALLOCATION need to be pre-allocated at the start of the program. Some
languages (C++, COBOL, FORTRAN etc.) support fixed allocation directly, so that you can
specify the structure statically at compile time so the memory will be set up correctly as the
program loads. For example, the following defines some buffers in C++:

struct Buffer { char data[1000]; };
static Buffer AllBuffers[N_BUFFERS_REQUIRED];

Smalltalk permits more sophisticated FIXED ALLOCATION, allowing you to include arbitrarily
complicated allocated object structures into the persistent Smalltalk image loaded whenever an
application starts.

In most other OO languages, you can implement FIXED ALLOCATION by allocating all the
objects you need at the start of the program, calling new as normal. Once objects are allocated
you should never call new again, but use the pre-existing objects instead, and call their pseudo-
constructors to initialise them as necessary. To support this pattern, you can design objects so
that their constructors (or calls to new) signal errors if they are called once the pre-allocation
phase has finished.

Pre-allocating objects from the system heap raises the possibility that even this initial allocation
could fail due to insufficient memory? In this situation there are two reasonable strategies you
can adopt. Either you can regard this as a fatal error and terminate the program; at this point
termination is usually a safe option, as the program as not yet started running and it’s unlikely
to do much damage. Alternatively you can write the code so that the program can continue in
the reduced space, as described in the PARTIAL FAILURE pattern.

3. Library Classes

It’s straightforward to avoid allocation for classes you’ve written: just avoid heap operations
such as new and delete. It’s more difficult to avoid allocation in library classes, unless the
libraries have been designed so that you can override their normal allocation strategies. For
example, a Java or C++ dynamic vector class will allocate memory whenever it has insufficient
capacity to store an element inserted into it.

Most collection classes separate their size (the number of elements the currently contain) from
their capacity (the number of elements they have allocated space for); a collection’s size must
be less than or equal to its capacity. To avoid extra allocation, you can pre-allocate containers
with sufficient capacity to meet their needs (see HYPOTH-A-SIZED COLLECTION [Auer and Beck
1996]). For example, the C++ Standard Template Library precisely defines the circumstances
when containers will allocate memory, also allows you to customise this allocation [Austern
1998].

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 10

Alternatively, you can use EMBEDDED POINTERS to implement relationships between objects,
thus removing the need for library classes to allocate memory beyond your control.

4. Embedded Objects

A very common form of fixed allocation in object-oriented programs is object embedding or
inlining: one object is allocated directly within another object. For example, a Screen object
owning a Rectangle object might embed the Rectangle in its own data structure rather than
having a pointer to a separate object.

Screen

Rectangle

rather than

Screen

Rectangle

C++ and Eiffel support inlining directly [Stroupstrup 1997; Meyer 1992]. In other languages
you can inline objects manually by refactoring your program, moving the fields and methods
from the internal object into the main object and rewriting method bodies as necessary to
maintain correctness [Fowler 1999].

Embedding objects removes the time and space overheads required by heap allocation: the main
object and the embedded object are just one object as far as the runtime system is concerned.
The embedded object no longer exists as a separate entity, however, so you cannot change or
replace the embedded object and you cannot use subtype polymorphism (virtual function calls
or message sends).

In languages, such as Java and Smalltalk, that do not support embedded intrinsically you won’t
be able to refer to the embedded object or pass it as an argument to other objects in the system.
For example, you might implement a Rectangle using two point objects as follows:

class Point {
private int x;
private int y;
// methods omitted

}

class Rectangle {
private Point topLeft;
private Point bottomRight;
// etc.

}

But you could avoid the need to allocate the two Point objects by making the two point objects
inline, at the cost of not being able to use the Point objects directly:

class InlinedRectangle {
private int xTopLeft;
private int yTopLeft;
private int xBottomRight;
private int yBottomRight;

 // ...
}

4. Deferring Commitment to Fixed Allocation

Sometimes you need to make the decision to use fixed allocation later in the project, either
because you are unsure it will be worth the effort, or because you used variable allocation but
discovered memory problems during performance testing. In that case you can use POOLED

ALLOCATION to give a similar interface to variable allocation but from a pre-allocated, fixed-
size pool.

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 11

Example
This example implements a message store as a fixed-size data structure, similar to the circular
buffer used in the ET-speak application. The message store stores a fixed number of fixed size
messages, overwriting old messages as new messages arrive.

Figure xxx below shows an example of the message store, handling the text of Hamlet’s most
famous soliloquy:

To be, or not to be, that is the question.
Whether 'tis nobler in the mind to suffer the slings and arrows of outrageous
fortune.
Or to take arms against a sea of troubles and by opposing end them.
To die, to sleep - no more;
And by a sleep to say we end the heart-ache and the thousand natural shocks that
flesh is heir to.
Tis a consummation devoutly to be wished.

The figure shows the store just as the most recent message (“tis a consummation… ” is just
about to overwrite the oldest (“To be, or not to be…”).

To be, or not to be, that is the question.

Whether 'tis nobler in the mind to suffer the

Or to take arms against a sea of troubles and

To die, to sleep - no more;

And by a sleep to say we end the heart-ache a

Tis a consummation devoutly to be wished.

1

2

3

4

5

Message
Store

New
message

O
verw

rites

Figure 2: Circular Buffer Message Store

1. Java Implementation

The basic MessageStore class stores a two-dimensional array of messages, and array of
message lengths, the index of the oldest message in the store, and a count of the number of
messages in the store. It’s impossible to avoid memory allocation using the existing versions of
the Java String and StringBuffer classes [Chan et al 1998], so we have implemented the store
using character arrays. A more robust implementation would create a FixedMemoryString
class to make it easier to manipulate these character arrays, or else modify the StringBuffer
class to allow clients to use it without memory allocation.

class MessageStore
{
 protected char[][] messages;
 protected int[] messageLengths;
 protected int messageSize;
 protected int oldestMessage;
 protected int size;
 public int messageSize() {return messages[0].length;}
 public int capacity() {return messages.length;}

The MessageStore constructor has two initialisation parameters: the number of messages
to store (capacity) and the maximum size of each message (maximumMessageLength). The

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 12

constructor allocates all the memory ever used; no other method allocates memory either
explicitly or through library operations.

 public MessageStore(int capacity, int messageSize) {
 this.messageSize = messageSize;
 messages = new char[capacity][messageSize];
 messageLengths = new int[capacity];
 oldestMessage = size = 0;
 }

The most important method adds a new message into the store. This method silently overwrites
earlier messages received and truncates messages that are longer than the chunkSize. Note
that this message accepts a character array and length as parameters, to avoid the allocation
implicit in using Java Strings.

 public void acceptMessage(char[] msg, int msgLength) {
 int nextMessage = (oldestMessage + size) % capacity();

 messageLengths[nextMessage] = Math.min(msgLength, messageSize);
 System.arraycopy(msg, 0, messages[nextMessage], 0,
 messageLengths[nextMessage]);
 if (size == capacity()) {
 oldestMessage = (oldestMessage + 1) % capacity();
 } else {
 size++;
 }
 }

The getMessage method retrieve a messages from a message store. Again, to avoid using the
Java String classes the client must pass in a pre-allocated buffer and the method returns the
length of the string copied into the buffer (see LENDING in the SMALL INTERFACES pattern).

 public int getMessage(int i, char[] destination) {
 int msgIndex = (oldestMessage + i) % capacity();
 System.arraycopy(messages[msgIndex], 0, destination, 0,
 messageLengths[msgIndex]);
 return messageLengths[msgIndex];
 }

2. C++ Implementation

C++ does less memory allocation than Java, so the same example in C++ looks more
conventional than the Java example. The main difference is that all the messages are stored
inside one large buffer (messageBuffer) rather than as a two-dimensional array.

class MessageStore {
private:
 char* messageBuffer;
 int oldestMessageNumber;
 int nMessagesInStore;
 int maxMessageLength;
 int maxMessagesInStore;

The constructor is straightforward:
public:
 MessageStore(int capacity, int maxMsgLength)
 : maxMessagesInStore(capacity),
 maxMessageLength(maxMsgLength),
 oldestMessageNumber(0),
 nMessagesInStore(0) {
 messageBuffer = new char[Capacity() * MessageStructureSize()];
 }

Note that MessageStructureSize() is one byte larger than maxMessageLength to cope with
the null character ’\0’ on the end of every C++ string:

 int NMessagesInStore() { return nMessagesInStore; }
 int Capacity() { return maxMessagesInStore; }
 int MessageStructureSize() { return maxMessageLength+1; }

The AcceptMessage function copies a new message from a C++ string:

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 13

 void AcceptMessage(const char* newMessageText) {
 int nextMessage = (oldestMessageNumber + NMessagesInStore()) % Capacity();
 int newMessageLength = strlen(newMessageText);
 int nBytesToCopy = min(newMessageLength,maxMessageLength)+1;
 strncpy(MessageAt(nextMessage), newMessageText, nBytesToCopy);
 MessageAt(nextMessage)[maxMessageLength] = '\0';
 if (NMessagesInStore() == Capacity()) {
 oldestMessageNumber = (oldestMessageNumber + 1) % Capacity();
 } else {
 nMessagesInStore++;
 }
 }

Accessing a message is easy: we simply return a pointer directly into the message buffer
(‘Borrowing’ – see SMALL INTERFACES). Calling GetMessage with index 0 returns the oldest
message, 1 the next oldest, etc.

const char* GetMessage(int i) {
 int messageIndex = (oldestMessageNumber + i) % Capacity();
 return MessageAt(messageIndex);
 }

AcceptMessage uses an auxiliary function to locate each message buffer:
private:
 char * MessageAt(int i) {
 return messageBuffer + i*MessageStructureSize();
 }
};

v v v

Known Uses
Many procedural languages support only fixed allocation, so most FORTRAN and COBOL
programs use only this pattern, allocating large arrays and never calling new or malloc.
Nowadays, most popular languages support VARIABLE ALLOCATION by default, so it can be
hard to revert to FIXED ALLOCATION. Many real-time systems use this pattern too: dynamic
memory allocation and compaction can take an unpredictable amount of time. The Real-Time
Specification for Java supports Fixed Allocation directly, by allowing objects to be allocated
from an ImmutableMemory area [Bollella et al 2000].

Safety-critical systems frequently use this pattern, since dynamic memory allocation systems
can fail if they run out of memory. Indeed the UK’s Department of Defence regulations for
safety-critical systems permitted only Fixed Allocation, although this has been relaxed recently
in some cases [Matthews 1989, DEF-STAN 00-55 1997]. For example, in a smart mobile
phone the telephone application must always be able to dial the emergency number (112, 999
or 911). A smart phone’s telephone application typically pre-allocates all the objects it needs
to make such a call – even though all its other memory allocation is dynamic.

Strings based on fixed-size buffers use this pattern. EPOC, for example, provides a template
class TBuf<int s> representing a string up to s characters in length [Symbian 99].
Programmers must either ensure than no strings can ever be allowed to overflow the buffer, or
else truncate strings where necessary.

See Also
VARIABLE ALLOCATION saves memory by allocating only enough memory to meet immediate
requirements, but requires more effort and overhead to manage and make memory requirements
harder to predict.

POOLED ALLOCATION can provide memory for a larger number of small objects, by allocating
space for a fixed-size number of items from a fixed-sized pool. Pooled allocation can also

Fixed Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 14

provide the same interface as variable allocation while allocating objects from a fixed-size
memory space.

If you cannot inline whole objects into other objects, you may be able to use EMBEDDED

POINTERS as an alternative.

MEMORY LIMIT can offer a more flexible approach to the same problem by permitting dynamic
allocation while limiting the total memory size allocated to a particular component.

READ-ONLY MEMORY is static by nature and always uses FIXED ALLOCATION.

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 15

Variable Allocation
Also known as: Dynamic Allocation

How can you avoid unused empty space?

• You have varying or unpredictable demands on memory.
• You need to minimise your program’s memory requirements, or
• You need to maximise the amount of data your can store in a fixed amount of memory.
• You can accept the overhead of heap allocation.
• You can handle the situations where memory allocation may fail at any arbitrary point

during the processing.

You have a variable amount of data to store. Perhaps you don’t know how much data to
store, or how it will be distributed between the classes and objects in your system.

For example, the Strap-It-On’s famous Word-O-Matic word-processor stores part of its
current document in main memory. The amount of memory this will require is unpredictable,
because it depends upon the size of the document, the screen size resolution, and the fonts and
paragraph formats selected by the user. To support a voice output feature beloved by the
marketing department, Word-O-Matic also saves the vocal emotions for each paragraph; some
documents use no emotions, but others require the complete emotional pantechnicon: joy,
anger, passion, despair, apathy. It would be very difficult indeed to pre-allocate suitable data
structures to handle Word-O-Matic’s requirements, because this would require balancing
memory between text, formats, fonts, emotions, and everything else. Whatever choices you
made, there would still be a large amount of memory wasted most of the time.

Writing a general-purpose library is even more complex than writing an application, because
you can’t make assumptions about the nature of your clients. Some clients may have fixed and
limited demands; others might legitimately require much more, or have needs that vary
enormously from moment to moment.

So how can you support flexible systems while minimising their use of memory?

Therefore: Allocate and deallocate variable-sized objects as and when you need them.

Store the data in different kinds of objects, as appropriate, and allocate and free them
dynamically as required. Implement the objects using dynamic structures such as linked lists,
variable-length collections and trees.

Ensure objects that are no longer needed are returned for reuse, either by making explicit calls
to release the memory, or by clearing references so that objects will be recovered by
REFERENCE COUNTING or a GARBAGE COLLECTOR.

For example, Word-O-Matic dynamically requests memory from the system to store the user’s
documents. To produce voice output Word-O-Matic just requests more memory. When it no
longer needs the memory (say because the user closes a document) the program releases the
memory back to the Strap-It-On system for other applications to use. If Word-O-Matic runs
out of memory, it suggests the user free up memory by closing another application.

Consequences
Variable-size structures avoid unused empty space, thus reducing memory requirements
overall and generally increasing design quality. Because the program does not have
assumptions about the amount of memory built into it directly, it is more likely to be scaleable,
able to take advantage of more memory should it become available.

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 16

A heap makes it easier to define interfaces between components; one component may create
allocate objects and pass them to another, leaving the responsibility for freeing memory to the
second. This makes the system easier to program, improving the design quality and making it
easier to maintain, because you can easily create new objects or new fields in objects without
affecting the rest of the allocation in the system.

Allocating memory throughout a program’s execution (rather than all at the beginning) can
decrease a program’s start-up time.

However: There will be a memory overhead to manage the dynamically allocated memory; typically a
two word header for every allocated block. Memory allocation and deallocation require
processor time, and this cost can be global to the language runtime system, the operating
system or even, in the case of the ill-fated Intel 432, in hardware. The memory required for
typical and worse case scenarios can become hard to predict. Because the objects supplied by
the heap are of varying size, heaps tend to get fragmented, adding to the memory overhead and
unpredictability,

Furthermore, you must be prepared to handle the situation where memory runs out. This may
happen unpredictably at any point where memory is allocated; handling it adds additional
complexity to the code and requires additional programmer effort to manage, and time and
energy to test properly. Finally, of couse, it’s impossible to use variable allocation in read-
only memory.

v v v

Implementation
Using this pattern is trivial in most object-oriented languages; it’s what you do by default.
Every OO language provides a mechanism to create new objects in heap memory, and another
mechanism (explicit or implicit) to return the memory to the heap, usually invoking an object
cleanup mechanism at the same time [Ingalls 1981].

1. Deleting Objects

It’s not just enough to create new objects, you also have to recycle the memory they occupy
when they are no longer required. Failing to dispose of unused objects causes memory leaks,
one of the most common kinds of bugs in object-oriented programming. While a workstation or
desktop PC may be able to tolerate a certainly amount of memory leakage, systems with less
memory must conserve memory more carefully.

There are two main kinds of techniques for managing memory: manual and automatic. The
manual technique is usually called object deletion; example mechanisms are C++’s delete
keyword and C’s free library call. The object is returned to free memory immediately during
the operation. The main problem with manual memory management is it is easy to omit to
delete objects. Forgetting to delete an object results in a memory leak. A more dramatic
problem is to delete an object that is still in use; this can cause your system to crash, especially
if the memory is then reallocated to some other object.

In contrast, automatic memory management techniques like REFERENCE COUNTING and
GARBAGE COLLECTION do not require programs to delete objects directly; rather they work out
‘automatically’ which objects can be deleted, by determining which objects are no longer used
in the program. This may happen some time after the object has been discarded. Automatic
management prevents the bugs caused by deleting objects that are still in use, since an object
still referenced will never be deleted. They also simplify the code required to deal with memory
management. Unfortunately, however, it’s quite common to have collections, or static
variables, still containing references to objects that are no longer actually required. Automatic

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 17

techniques can’t delete these objects, so they remain – they are memory leaks. It remains the
programmer’s responsibility to ensure this doesn’t happen.

2. Signalling Allocation Failure

Variable allocation is flexible and dynamic, so it can tune a systems memory allocation to suit
the instantaneous demands of the program. Unfortunately because it is dynamic the program’s
memory use is unpredictable, and it can fail if the system has insufficient memory to meet a
program’s request. Allocation failures need to be communicated to the program making the
request.

2.1. Error Codes. Allocation functions (such as new) to return an error code if allocation
fails. This is easy to implement: C’s malloc for example, returns a null pointer on failure.
This approach requires programmer discipline and leads to clumsy application code, since you
must check for allocation failure every time you allocate some memory.. Furthermore, every
component interface must specify mechanisms to signal that allocation has failed. In practice,
this approach, although simple, should be used as a last resort.

2.2. Exceptions. Far easier for the programmer allocating memory is to signal failure using an
exception.. The main benefit of exceptions is that the special case of allocation failure can be
handled separately from the main body of the application, while still ensuring the allocation
failure does not go unnoticed. Support for exceptions can increase code size, however, and
make it more difficult to implement code in intermediate functions that must release resources
as a result of the exception.

2.3. Terminating the program. Ignoring allocation failure altogether is the simplest possible
approach. If failure does happen, therefore, the system can try to notify the user as
appropriately, then abort. For example many MS Windows put up a dialog box on heap
failure, then terminate. This approach is clearly only suitable when there is significantly more
memory available than the application is likely to need — in other words, when you are not in a
memory limited environment. Aborting the program is acceptable in the one case where you are
using the system heap to implement FIXED ALLOCATION by providing a fixed amount of
memory before your program has begun executing, because you cannot tolerate failure once the
program has actually started running.

3. Avoiding Fragmentation

Fragmentation can be a significant problem with variable allocation from a heap for some
applications. Often, the best way to address fragmentation is not to worry about it until you
suspect that it is affecting your program’s performance. You can detect a problem by
comparing the amount of memory allocated to useful objects with the total memory available to
the system (see the MEMORY LIMIT pattern for a way of counting the total memory allocated to
objects). Memory that is not in use but cannot be allocated may be due to fragmentation.

3.1. Variable Sized Allocation. Avoid interspersing allocations of very large and small
objects. For example, a small object allocated between two large objects that are then freed
will prevent the heap manager combining the two large empty spaces, making it difficult to
allocate further larger blocks. You can address this using having two or more heaps for
different sized objects: Microsoft C++, for example, uses one separate heap for allocations of
less than about 200 bytes, and a second heap for all other allocations [Microsoft 97].

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 18

1

The Memory Manager cannot combine the two large free
blocks due to the small block between

Allocated Memory

Free Memory

3.2. Transient Objects. Operating systems can often reclaim unused memory from the end of
the heap, but not from the middle. If you have a transient need for a very large object, avoid
allocating further objects until you’ve de-allocated it. Otherwise, you may leave a very large
‘hole’ in the heap, which never gets filled and cannot be returned to the wider system until your
application terminates. For the same reason, be careful of reallocating buffers to increase their
size; this leave the memory allocated to the old buffer unused in the middle of the heap. Use
the MEMORY DISCARD pattern to provide specialised allocation for transient objects,

This small block allocated at the end of the heap prevents the
Operating system reclaiming all this free memory

2

3.3. Grouping Allocations. Try to keep related allocations and de-allocations together, in
preference to interspersing them with unrelated heap operations. This way, the allocations are
likely to be contiguous, and the de-allocations will free up all of the contiguous space, creating
a large contiguous area for reallocation.

CBA

Blocks A, B, and C have been allocated and deleted.
However the two blocks interspersed allocated during
allocation or during deletion now prevent the Memory
Manager from recombining the three blocks.

3

4. Standard Allocation Sizes

Normally applications tell the heap the sizes of the objects they need to allocate, and the heap
allocates memory to store those objects. Another way around fragmentation is for the heap to
specify the sizes of memory blocks available to the application. This works if you can afford
to waste unused memory inside small blocks (internal fragmentation), if all the objects you
allocated have the same size (POOLED ALLOCATION) or the application can support non-
contiguous allocation. For example, if you can use 10 1K memory blocks rather then one 10K
block, the heap will be much more likely to be able to meet your requirements when memory is
low.

5. Implementing a Heap

A good implementation of a heap has to solve a number of difficult problems:

• How to represent an allocated cell.
• How to manage the ‘free list’ of blocks of deallocated memory

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 19

• How to ensure requests for new blocks reuse a suitable free block.
• How to prevent the heap becoming fragmented into smaller and smaller blocks of free

memory combining adjacent free blocks.

Allocated MemoryFree Memory

A B

Can the heap combine blocks A and B?

Knuth [1997] and Jones and Lins [1996] describe many implementations of memory heaps and
garbage collectors that address these problems; Goldberg and Robson [1983] present a detailed
example in Smalltalk. In practice, however, you’ll almost always be better off buying or
reusing an existing heap implementation. Libraries for low-level memory management, such as
Doug Lea’s malloc [Lea 2000], are readily available.

Example
We can implement a Message Store using VARIABLE ALLOCATION from the Java heap. The
implementation of this version is much simpler, even though we’ve kept the strange character-
array interface for compatibility with the FIXED ALLOCATION version. Because we’re able to
allocate objects on the heap at any time, we can use library routines that allocate heap memory,
and we can rely on the Java built-in memory failure exceptions and garbage collection to deal
with resource limitations and object deletion.

The HeapMessageStore class simply uses a Java vector to store messages:
class HeapMessageStore {
 protected Vector messages = new Vector();

To accept a message, we simply add a string into the vector.
 public void acceptMessage(char[] msg, int msgLength) {
 messages.addElement(new String(msg, 0, msgLength));
 }

Of course, these allocations could fail if there is not enough memory, propagating exceptions
into the client code.

To return a message, we can copy the string into the array provided by the client, keeping the
same interface as the FIXED ALLOCATION version

 public int getMessage(int i, char[] destination) {
 String result = (String) messages.elementAt(i);
 result.getChars(0, result.length(), destination, 0);
 return result.length();
 }

Or more simply we could just return the string — if the rest of the system permitted, we could
add messages by storing a string directly as well:

 public String getMessage(int i) {
 return (String) messages.elementAt(i);
 }

Finally, we now need to provide a way for clients to delete messages from the store, since they
are no longer overwritten automatically:

public void deleteMessage(int i) {
 messages.removeElementAt(i);
 };

Variable Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 20

This relies on Java’s GARBAGE COLLECTION to clean up the String object and any objects in the
internal implementation of the Vector.

v v v

Known Uses
Virtually all object-oriented programming languages support this pattern by encouraging the
use of dynamically allocated memory and by providing libraries based on variable allocation.
The vast majority of C++, Smalltalk, and Java applications use this pattern by default. Other
languages that encourage dynamic memory allocation also encourage this pattern; hence most
C, Pascal, and Lisp programs use this pattern too. Most environments provide dynamically-
allocated strings, which use variable-length data structures, and dynamic languages like
Smalltalk and Java provide built in garbage collectors to manage dynamically varying storage
requirements.

See Also
COMPACTION can reduce the memory overhead from fragmentation, usually at a cost in time
performance. If the memory runs out, the program should normally suffer only a PARTIAL

FAILURE. Using FIXED ALLOCATION avoids the overhead, unpredictability and complexity of a
variable sized structure at the cost of often allocating more memory than is actually required.
MULTIPLE REPRESENTATIONS can switch between different variable-sized structures for
particular cases. You can limit the memory allocated to specific components by imposing a
MEMORY LIMIT.

The HYPOTH-A-SIZE collection pattern optimises allocation of variable-sized structures [Auer
and Beck 1996].

Exceptional C++ [Sutter 2000], Advanced C++ [Coplien 1994], and More Effective C++
[Meyers 1996] describe various programming techniques to ensure objects are deleted correctly
in C++.

Doug Lea’s describes the design of his memory allocator, malloc, in A Memory Allocator
[Lea 2000]. Many versions of the Unix system use this allocator, including Linux. Paul
Wilson and Mark Johnston have conducted several surveys of the performance of memory that
demonstrate standard allocation algorithms (such as Doug Lea’s) are suitable most programs
[Johnstone and Wilson 1998].

Lycklama [1999] describes several situations where unused Java objects will not be deleted,
and techniques for avoiding them.

Memory Discard Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 21

Memory Discard
Also known as: Stack Allocation, Scratchpad.

How can you allocate temporary objects?

• You are doing OO programming with limited memory
• You need transient objects that all last only for a well-defined time.
• You don’t want temporary allocations to interfere with the allocation of permanent

objects.
• You don’t want the complexity of implementing garbage collection or the overhead of

heap allocation.
• These objects don’t own non-memory resources; or have simple mechanisms to free

them

Dynamic allocation techniques can impose significant overheads. For example, the designers
of the Strap-It-On’s ‘Back Seat Jet Pilot’ application fondly hoped to connect the Strap-It-On
to the main control system of a commercial jet plane, allowing passengers to take over in an
emergency! The method that calculates the control parameters uses a large number of
temporary objects and must execute about fifty times a second. If the objects were allocated
from the Strap-It-On’s system heap, the cycle time would be too slow, and the jet would crash
immediately.

Similar (but less farfetched, perhaps) situations are common in programming. You often need
a set of transient objects with lifetimes that are closely linked to the execution of the code; the
most common example being objects that last for the duration of a method invocation.

FIXED ALLOCATION is unsuitable for temporary objects because, by definition, it allocates space
permanently and requires you to know exactly which objects will be required in advance.
VARIABLE ALLOCATION isn’t suitable for allocating such transient objects either, as it can be
relatively slow and lots of temporary objects can fragment the heap.

Therefore: Allocate objects from a temporary workspace and discard it on completion.

Use a program stack frame, a temporary heap, or a pre-allocated area of memory as a
temporary workspace to store transient objects. Allocate objects from this memory area by
incrementing an appropriate pointer. Deallocate all the objects simultaneously by discarding or
resetting the memory area. If necessary keep a list of other resources owned by the transient
objects and release these explicitly.

For example, the Back Seat Jet Pilot application pre-allocates a buffer (FIXED ALLOCATION),
and allocates each temporary object by incrementing a pointer within this buffer. On return
from the calculation method, the pointer is reset to the start of the buffer, effectively discarding
all of the temporary objects. This made the calculation of the jet plane controls quite fast
enough, so that when the Aviation Authorities banned Back Seat Jet Pilot on safety grounds the
designers were triumphantly able to convert it to create the best-selling Strap-Jet Flight
Simulator.

Consequences
Both memory allocation and de-allocation are very fast, improving the system’s time
performance. The time required is fixed, making it suitable for real-time systems. Initialising
the memory area is fast, so start-up time costs are minimal. The temporary workspace doesn’t
last long, which avoids fragmentation.

The basic pattern is easy to program, requiring little programmer effort.

Memory Discard Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 22

By quarantining transient objects from other memory allocations, this pattern can make the
memory consumption of the whole system more predictable, ensuring transient objects remain
a strictly local affair.

However: Programmer Discipline is required to allocate transient objects from the temporary
workspace, and to manage any external resources owned by the objects, and to ensure the
transient objects are not used after the workspace has been discarded or recycled. In
particular, if the temporary objects use objects from external libraries, these may allocate
normal heap memory, or operating system handles.

Because this pattern increases the program’s complexity, it also increases its testing cost.

Languages that rely on automatic memory management generally do not support the MEMORY

DISCARD pattern directly: the point of automatic memory management is that it discards the
objects for you.

v v v

Implementation
Here are some issues to consider when implementing MEMORY DISCARD.

1. Stack Allocation

In languages that support it, such as C++ and Pascal, stack allocation is so common that we
take it for granted; generally, Stack Allocation is the most common form of Memory Discard.
Objects are allocated on the program stack for a method or function call, and deallocated when
the call returns. This very easy to program, but supports only objects with the exact lifetime of
the method.

Some C and C++ environments even allow variable-sized allocation on the stack. Microsoft
C++, for example, supports _alloca to allocate memory that lasts only till the end of the
function [Microsoft 97]

void* someMemory = _alloca(100); // Allocates 100 bytes on the stack

GNU G++ has a similar facility [Stallman 1999]. These functions are not standard, however,
and no form of stack allocation is possible in standard Java or Smalltalk.

2. Temporary Heaps

You can allocate some memory permanently (FIXED ALLOCATION) or temporarily (VARIABLE

ALLOCATION), and create your objects in this area. If you will delete the transient objects on
mass when you delete the whole workspace, you can allocate objects simply by increasing a
pointer into the temporary workspace: this should be almost as efficient as stack allocation.
You can then recycle all the objects in the heap by resetting the pointer back to the start of the
workspace, or just discard the whole heap when you are done.

A temporary heap is more difficult to implement than stack allocation, but has the advantage
that you can control the lifetime and size of the allocated area directly.

2.1. Using operating system heaps in C++. Although there are no standard C++ functions
that support more than one heap, many environments provide vendor-specific APIs to multiple
heaps. EPOC, for example, provides the following functions to support temporary heaps
[Symbian99]:
UserHeap::ChunkHeap Creates a heap from the system memory pool
Rheap::SwitchHeap Switches heaps, so that all future allocations for this

thread comes from the heap passed as a parameter.

Memory Discard Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 23

Rheap::FreeAll Efficiently deletes all objects allocated in a heap.
Rheap::Close Destroys a heap

MS Windows CE and other Windows variants provide the functions [Microsoft 97]:
HeapCreate Creates a heap from the system memory pool.
HeapAlloc, HeapFree Allocate and releases memory from a heap passed as

a parameter
HeapDestroy Destroys a heap

PalmOs is designed for much smaller heaps than either EPOC or CE, and doesn’t encourage
multiple dynamic heaps. Of course, Palm applications do APPLICATION SWITCHING, so discard
all their dynamic program data regularly.

2.2. Using C++ placement new. If you implement your own C++ heap or use the Windows
CE heap functions, you cannot use the standard version of operator new, because it allocates
memory from the default heap. C++ includes the placement new operator that constructs an
object within some memory that you supply [Stroustrup 1997]. You can use the placement
new operator with any public constructor:

 void* allocatedMemory = HeapAlloc(temporaryHeap, sizeof(MyClass));
 MyClass* pMyClass = new(allocatedMemory) MyClass;

Placement new is usually provided as part of the C++ standard library, but if not it’s trivial to
implement:

void* operator new(size_t /*heapSizeInBytes*/, void* memorySpace) {
 return memorySpace;
}

3. Releasing resources held by transient objects

Transient objects can own resources such as heap memory or external system objects (e.g. file
or window handles). You need to ensure that these resources are released when the temporary
objects are destroyed. C++ guarantees to invoke destructors for all stack-allocated objects
whenever a C++ function exits, either normally or via an exception. In C++ ‘resource de-
allocation is finalisation’ [Stroustrup 1995] so you should release resources in the destructor.
The C++ standard l library includes the auto_ptr class that mimics a pointer, but deletes the
object it points to when it is itself destructed, unless the object has been released first. (See
PARTIAL FAILURE for more discussion of auto_ptr).

It’s much more complex to releasing resources held by objects in a temporary heap, because
the heap generally does not know the classes of the objects that are stored within it. Efficient
heap designs do not even store the number of objects they contains, but simply the size of the
heap and a pointer to the next free location.

If you do keep a list of every object in a temporary heap, and can arrange that they all share a
common base class, you can invoke the destructor of each object explicitly:

object->~BaseClass();

But it’s usually simpler to ensure that objects in temporary heaps do not hold external
resources.

When resources can be SHARED, so that there may be other references to the resources in
addition to the transient ones, simple deallocation from the destructor may not be enough, and

Memory Discard Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 24

you may need to use REFERENCE COUNTING or even GARBAGE COLLECTION to manage the
resources.

4. Dangling Pointers

You have to be very careful about returning references to discardable objects. These
references will be invalid once the workspace has been discarded. Accessing objects via such
‘dangling pointers’ can have unpredictable results, especially if the memory that was used for
the temporary workspace is now being used for some other purpose, and it takes care and
programmer discipline to avoid this problem.

Example
This C++ example implements a temporary heap. The heap memory itself uses FIXED

ALLOCATION; it’s allocated when during the heap object initialisation and lasts as long as the
heap object. It supports a Reset() function that discards all the objects within it. The heap
takes its memory from the system-wide heap so that its size can be configured during
initialisation.

Using such a heap is straightforward, with the help of another overloaded operator new. For
example the following creates a 1000-byte heap, allocates an object on it, then discards the
object. The heap will also be discarded when theHeap goes out of scope. Note that the class
IntermediateCalculationResult may not have a destructor.

TemporaryHeap theHeap(1000);
IntermediateCalculationResult* p =
 new(theHeap) IntermediateCalculationResult;
theHeap.Reset();

The overloaded operator new is, again, simple:
void * operator new (size_t heapSizeInBytes, TemporaryHeap& theHeap) {
 return theHeap.Allocate(heapSizeInBytes);
}

1. TemporaryHeap Implementation

The TemporaryHeap class records the size of the heap, the amount of memory currently
allocated, and keeps a pointer (heapMemory) to that memory.

class TemporaryHeap {
private:
 size_t nBytesAllocated;
 size_t heapSizeInBytes;
 char* heapMemory;

The constructor and destructor for the heap class are straightforward; any allocation exceptions
will percolate up to the client:

TemporaryHeap::TemporaryHeap(size_t heapSize)
 : heapSizeInBytes(heapSize) {
 heapMemory = new char[heapSizeInBytes];
 Reset();
}

TemporaryHeap::~TemporaryHeap() {
 delete[] heapMemory;
}

The function to allocate memory from the TemporaryHeap increases a count and throws the
bad_alloc exception if the heap is full.

Memory Discard Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 25

void * TemporaryHeap::Allocate(size_t sizeOfObject) {
 if (nBytesAllocated + sizeOfObject >= heapSizeInBytes)
 throw bad_alloc();

 void *allocatedCell = heapMemory + nBytesAllocated;
 nBytesAllocated += sizeOfObject;
 return allocatedCell;
}

The Reset function simply resets the allocation count.
void TemporaryHeap::Reset() {
 nBytesAllocated = 0;
}

v v v

Known Uses
All object-oriented languages use stack allocation for function return addresses and for passing
parameters. C++ and Eiffel also allow programmers to allocate temporary objects on the stack
[Stroustrup 1997, Meyer 1992]. The Real-time Specification for Java will support Memory
Discard by allowing programmers to create ScopedMemory areas that are discarded when they
are no longer accessible by real-time threads [Bollella et al 2000].

In Microsoft Windows CE, you can create a separate heap, allocate objects within that heap,
and then delete the separate heap, discarding every object inside it [Boling 1998]. PalmOS
discards all memory chunks owned by an application when it application exits [Palm 2000].

Recently, some Symbian developers were porting an existing handwriting recognition package
to EPOC. For performance reasons it had to run in the Window Server, a process that must
never terminate. Unfortunately the implementation, though otherwise good, contained small
memory leaks – particularly following memory exhaustion. Their solution was to run the
recognition software using a separate heap, and to discard the heap when it got too large.

‘Regions’ are a compiler technique for allocating transient objects that last rather longer than
stack frames. Dataflow analysis identifies objects to place in transient regions; the regions are
allocated from a stack that is independent of the control stack [Tofte 1998].

The ‘Generational Copying’ GARBAGE COLLECTORS [Jones and Lins 1996, Ungar 1984] used in
modern Smalltalk and Java systems provide a form of memory discard. These collectors
allocate new objects in a separate memory area (the “Eden space”). When this space becomes
full, an ‘angel with a flaming sword’ copies any objects inside it that are still in use out of Eden
and into a more permanent memory area. The Eden space is then reset to be empty, discarding
all the unused objects. Successively larger and longer-lived memory spaces can be collected
using the same technique, each time promoting objects up through a cycle of reincarnation,
until permanent objects reach the promised land that is never garbage collected, where objects
live for ever.

See Also
APPLICATION SWITCHING is a more coarse-grained alternative, using process termination to
discard both heap and executable code. DATA FILES often uses stack allocation or a temporary
workspace to process each item in turn from secondary storage. The discarded memory area
may use either FIXED ALLOCATION, or VARIABLE ALLOCATION.

POOLED ALLOCATION is similar to MEMORY DISCARD, in that both patterns allocate a large
block of memory and then apportion it between smaller objects; POOLED ALLOCATION,
however, supports de-allocation.

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 26

Pooled Allocation
 Also Known As: Memory Pool

 How can you allocate a large number of similar objects?

• Your system needs a large number of small objects

• The objects are all roughly the same size.

• The objects need to be allocated and released dynamically.

• You don’t, can’t, aren’t allowed to, or won’t used VARIABLE ALLOCATION

• Allocating each object individually imposes a large overhead for object headers and
risks fragmentation.

Some applications use a large number of similar objects, and allocate and deallocate them
often. For example, Strap-It-On’s ‘Alien Invasion’ game needs to record the positions and
states of lots of graphical sprites that represent invading aliens, asteroids, and strategic missiles
fired by the players. You could use VARIABLE ALLOCATION to allocate these objects, but
typical memory managers store object headers with every object; for small objects these
headers can double the program’s memory requirements. In addition, allocating and
deallocating small objects from a shared heap risks fragmentation and increases the time
overhead of managing large numbers of dynamic objects.

You could consider using the FLYWEIGHT pattern [Gamma+ 1995], but this does not help with
managing data that is intrinsic to objects themselves. MEMORY COMPACTION can reduce
fragmentation but imposes extra overheads in memory and time performance. So how can you
manage large numbers of small objects?

Therefore: Pre-allocate a pool of objects, and recycle unused objects.

Pre-allocate enough memory to hold a large number of objects at the start of your program,
typically by using FIXED ALLOCATION to create an array of the objects. This array becomes a
‘pool’ of unused, uninitialised, objects. When the application needs a new object, choose an
unused object from the pool and pass it to the program to initialise and use it. When the
application is finished with the object, return the object to the pool.

[In Use]

[In Use]

[In Use]

[In Use]

Free
Pool

Client
App.

In practice objects do not have to be physically removed and reinserted into the pool (this will
be difficult in languages like C++ when the objects are stored directly within the pool array
using FIXED ALLOCATION). Instead you’ll need to track which pool objects are currently in use
and which are free. A linked list (using EMBEDDED POINTERS) of the free objects will often
suffice.

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 27

For example Alien Invasion uses a pool of sprite objects to support the Alien Invasion game.
This pool is allocated at the start of the program and holds enough objects to represent all the
sprites that can be displayed on the Strap-It-On’s high-resolution 2-inch screen. No extra
memory is required for each object by the memory manager or runtime system. All unused
sprites are kept on a free list, so a new sprite can be allocated or deallocated using just two
assignments.

Consequence
By reducing memory used for object headers and lots to fragmentation, pooled allocation lets
you store more objects in less memory, reducing the memory requirements of the system as a
whole. Simultaneously, by allocating a fixed-sized pool to hold all these objects, you can
predict the amount of memory required exactly. Objects allocated from a pool will be close
together in memory, reducing need for PAGING overhead in a paged system. Memory allocation
and deallocation is fast, increasing time performance and real-time responsiveness.

However: The objects allocated to the pool are never returned to the heap, so the memory
isn’t available to other parts of the application, potentially increasing overall memory
requirements. It takes programmer effort to implement the pool, programmer discipline to
use it correctly, and further effort to test that it all works. A fixed-size pool can decrease your
program's scalability, making it harder to take advantage of more memory should it become
available, and also reduce your maintainability, by making it harder to subclass pooled
objects. Preallocating a pool can increase your system's startup time.

v v v

Implementation
POOLED ALLOCATION combines features of FIXED ALLOCATION and VARIABLE ALLOCATION.
The pool itself is typically statically allocated (so the overall memory consumption is
predictable) but objects within the pool are allocated dynamically. Like FIXED ALLOCATION,
the pooled objects are actually preallocated and have to be initialised before they are used
(independently of their constructors). Like VARIABLE ALLOCATION, requests to allocate new
objects may be denied if the pool is empty, so you have to handle memory exhaustion; and you
have to take care to release unused objects back to the pool.

Here are some issues to consider when using POOLED ALLOCATION:

1. Reducing Memory Overheads

One reason to use Pooled Allocation is to reduce the amount of memory required for booking in
a variable allocation memory manager: pooled allocation needs to keep less information about
every individual object allocated, because each objects typically the same size and often the
same type. By comparing memory manager overheads with the objects' size, you can evaluate
if pooled allocation makes sense in your application. Removing a two-word header from a
three-word object is probably worthwhile, but removing a two-word header from a two kilobyte
objects is not (unless there are millions of these objects and memory is very scarce).

2. Variable Sized Objects

Pooled allocation works best when every object in the pool has the same size. In practice, this
can mean that every object in the pool should be the same class, but this greatly reduces the
flexibility of a program’s design.

If the sizes of objects you need to allocate are similar, although not exactly the same, you can
build a pool capable of storing the largest size of object. This will suffer from internal
fragmentation, wasting memory when smaller objects are allocated in a larger space, but this

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 28

fragmentation is bounded by the size of each pool entry (unlike external fragmentation, which
can eventually consume a large proportion of a heap).

Alternatively, you can use a separate pool for each class of objects you need to allocate. Per-
class pools can further reduce memory overheads because you can determine the pool to which
an object belongs (and thus its class) by inspecting the object’s memory address. This means
that you do not need to store a class pointer [Goldberg and Robson 1983] or vtbl pointer [Ellis
and Stroustrup 1980] with every object, rather one pointer can be shared by every object in the
pool. A per-class pool is called “a Big Bag of Pages” or “BiBoP” because it is typically
allocated contiguous memory pages so that an object’s pool (and thus class) can be determined
by fast bit manipulations on its address. [Steele 1977, Dybvig 1994].

3. Variable Size Pools

If your pool is a FIXED ALLOCATION you have determine how big the pool should be before your
program starts running, and you have no option but to fail a request for a new object when the
pool is empty. Alternatively, when the pool is empty you could use VARIABLE ALLOCATION and
request more memory from the system. This has the advantage that pooled object allocation
will not fail when there is abundant memory in the system, but of course it makes the
program’s memory use more difficult to predict. Flexible pools can provide guaranteed
performance when memory is low (from the FIXED ALLOCATION portion) while offering extra
performance when resources are available.

4. Making Pools Transparent

Sometimes it can be useful for objects that use POOLED ALLOCATION to present the same
interface as VARIABLE ALLOCATION. For example, you could need to introduce pooled
allocation into a program that uses variable allocation by default (because the programming
language uses variable allocation by default).

In C++ this is easy to implement; you can overload operator new to allocate an object from a
pool, and operator delete to return it. In Smalltalk and Java this approach doesn’t work so
seamlessly: in Smalltalk you can override object creation, but in Java you cannot reliably
override either creation or deletion. In these languages you will need to modify clients to
allocate and release objects explicitly.

C++ has a further advantage over more strongly typed languages such a Java. Because we can
address each instance as an area of raw memory, we can reuse the objects differently when the
client does not need them. In particular, as the picture below shows, we can reuse the first few
bytes of each element as an embedded pointer to keep a free list of unallocated objects.

Free
list

Client
using
items
from
the
pool

Figure 3: Reusing object memory to implement a free list

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 29

The following code uses this technique to implement a C++ class: TreeNode, representing part
of a tree data structure. Clients use instances of the class as though allocated from the system
heap:

 TreeNode* node = new TreeNode;
 delete node;

4.1 Implementation. Internally the class uses a static pointer, freeList, to the start of the
free list. Each TreeNode object is small so we don’t want the overhead of heap allocation for
each one separately. Instead we allocate them in blocks, of size BLOCK_SIZE:

class TreeNode {
private:
 enum { BLOCK_SIZE = 10 };
 static void* freeList;

 TreeNode* leftNode;
 TreeNode* rightNode;
 void* data;
// etc.
};

(The implementation of a TreeNode to give a tree structure using these data members is left as
an exercise for the reader!)

TreeNode has one static function to allocate new objects when required and add them all to the
free list:

/* static */
void* TreeNode::freeList=0;

/* static */
void TreeNode::IncreasePool() {
 char* node = new char[BLOCK_SIZE * sizeof(TreeNode)];
 for(int i=0; i<BLOCK_SIZE; i++)
 AddToFreeList(node + (i * sizeof(TreeNode)));
}

To make the POOLED ALLOCATION look like VARIABLE ALLOCATION, TreeNode must implement
the operators new and delete. There’s one caveat for these implementations: any derived
class will inherit the same implementation. So, in operator new, we must check the size of the
object being allocated to ensure that we only use this implementation for objects of the correct
size, otherwise we allocate the object from the system heap.

void* TreeNode::operator new(size_t bytesToAllocate) {
 if(bytesToAllocate != sizeof(TreeNode))
 return ::operator new(bytesToAllocate);
 if(freeList == 0)
 IncreasePool();
 void *node = freeList;
 freeList = *((void**)node);
 return node;
}

Operator delete is straightforward (or as straightforward as these operators can ever be). We
check that the object is a suitable size to be allocated from the pool, and if so, return it to the
free list; otherwise we return it to the heap.

void TreeNode::operator delete(void* node, size_t bytesToFree) {
 if(bytesToFree != sizeof(TreeNode))
 ::operator delete(node);
 else
 AddToFreeList(node);
}

AddToFreeList uses the first few bytes of the object as the list pointer:
void TreeNode::AddToFreeList(void* node) {
 *((void**)node) = freeList;
 freeList = node;
}

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 30

Example
As a contrast to the C++ and Java syntax, here we present a simple Smalltalk implementation
of pooled allocation. The class allocates a fixed number of pooled objects when the system
starts up and stores them in the class-side array Pool. Objects are allocated from the Pool as
if it were a stack; the class variable PoolTopObject keeps track of the top of the stack.

Object subclass: #PooledObject
 instanceVariableNames: ''
 classVariableNames:
 'Pool PoolTopObject'
 poolDictionaries: ''

The class method buildPool initialises all the objects in the pool, and need be called only once
on initialisation of the system. Unlike other Smalltalk class initialisation functions, this isn’t
really a ‘compile-time-only’ function; a previous execution of the system could have left
objects in the pool, so we’ll need to call this function to restore the pool to its initial state.

PooledObject class

buildPool: poolSize
 "Puts poolSize elements in the pool"
 | newObject |
 Pool := Array new: poolSize.
 (1 to: poolSize) do:
 [:i | Pool at: i put: PooledObject create.].
 PoolTopObject = 1.
 ^ Pool

We need a create class method that buildPool can call to create new instances.
create
 "Allocates an uninitialised instance of this object"
 ^ super new

We can then define the PooledObject class new method to remove and return the object at
the top of the pool.

new
 "Allocate a new object from the Pool"
 | newObject |
 newObject := Pool at: PoolTopObject.
 Pool at: PoolTopObject put: nil.
 PoolTopObject := PoolTopObject + 1.
 ^ newObject

Clients of the pooled object must send the free message to a pooled object when they no
longer need it. This requires more discipline than standard Smalltalk programming, which use
garbage collection or reference counting to recycle unused objects automatically.

free
 "Restores myself to the pool"
 self class free: self

The real work of recycling an object is done by the class method free: that pushes an object
back into the pool.

free: aPooledObject
 "Return a pooled object to the pool"
 PoolTopObject := PoolTopObject – 1.
 Pool at: PoolTopObject put: aPooledObject.

v v v

Known Uses
Many operating systems use pooled allocation, and provide parameters administrators can set
to control the size of the pools for various operating system resources, such as IO buffers,
processes, and file handles. VMS, for example, pre-allocates these into fixed size pools, and
allocates each type of objects from the corresponding pool. [Kenah and Bate 1984]. UNIX

Pooled Allocation Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 31

uses a fixed size pool of process objects (the process table) [Goodheart 1994] and even MS-
DOS provides a configurable pool of file IO buffers, specified in the configuration file
CONFIG.SYS.

EPOC’s Database Server uses a variable sized pool to store blocks of data read from a
database, and EPOC’s Socket service uses a fixed size pool of buffers [Symbian 1999].

NorTel’s Smalltalk implementation of telephone exchange software used pools of Call objects
to avoid the real-time limitations of heap allocation in critical parts of the system.

See Also
Memory Pools are often allocated using FIXED ALLOCATION, although they can also use
VARIABLE ALLOCATION. MEMORY DISCARD also allocates many smaller objects from a large
buffer; it can handle variable sized objects, though they must all be deleted simultaneously.

MEMORY LIMIT has a similar effect to POOLED ALLOCATION as both can cap the total memory
used by a component.

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 32

Compaction
Also known as: Managed Tables, Memory Handles, Defragmentation

How do you recover memory lost to fragmentation?

• You have a large number of variable sized objects.

• Objects are allocated and deallocated randomly.

• Objects can change in size during their lifetimes.

• Fragmentation wastes significant amounts of memory space

• You can accept a small overhead in accessing each object.

External fragmentation is a major problem with VARIABLE ALLOCATION. For example, the
Strap-It-On™ ’s voice input decoder has up to a dozen large buffers active at any time, each
containing a logical word to decode. They account for most of the memory used by the voice
decoder component and can vary in size as decoding progresses. If they were allocated directly
from a normal heap, there’d be a lot of memory lost to fragmentation. If objects shrink, more
space is wasted between them; one object cannot grow past the memory allocated to another
object, but allocating more free memory between objects to leave them room to grow just
wastes more memory.

Allocated MemoryFree Memory

A B C D

Can't allocate a new large block, even though there's plenty
of space

Figure 4: The effect of allocating large buffers

Fragmentation occurs because computer memory is arranged linearly and accessed through
pointers. Virtual memory (see PAGING) implements this same linear address space. When you
allocate objects in memory you record this allocation and ownership using a pointer: that is, an
index into this linear address space.

Therefore: Move objects in memory to remove unused space between them.

Space lost by external fragmentation can be recovered by moving allocated objects in memory
so that objects are allocated contiguously, one after another: all the previously wasted space is
collected at one end of the address space, so moving the objects effectively moves the unused
spaces between them.

A B C D

Figure 5: Result of compaction

The main problem with moving objects is ensuring that any references to them are updated
correctly: once an object has been moved to a new location, all pointers to its old location are
invalid. While it is possible to find and update every pointer to every moved object, it is
generally simpler to introduce an extra level of indirection. Rather than having lots of pointers
containing the memory address of each object, pointers to refer to a “handle for this object”. A
handle is a unique pointer to the actual memory address of an object: when you move the

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 33

allocated object in memory you update the handle to refer to the object’s new location, and all
other pointers can still access the object correctly.

Object A

Object B

 B pointer

A pointer

References to
Object A

References to
Object B ... etc.

Figure 6: Handles

In the figure above, if you copy object A to a different location in memory and update the ‘A
Pointer’ handle, all external references to object A will remain the same but accesses through
them will find the new location.

Thus the Strap-It-On™ ’s voice input decoder maintains a large contiguous memory area for
buffers, and uses a simple algorithm to allocate each buffer from it. Each buffer is accessed
through handle. When there’s insufficient contiguous space for a new buffer or when an
existing buffer needs to grow, even though there’s sufficient total memory available, the
software moves buffers in memory to free up the space and adjusts the handles to refer to the
new buffer locations.

Consequences
You have little or no memory wastage due to external fragmentation, reducing the program’s
memory requirements or increasing its capacity within a fixed amount of memory.
Compacting data structures can scale up easily should more memory become available.

However: You’ll need additional code to manage the handles; if the compiler doesn’t do this for you,
this will require programmer effort to implement. Indirect access to objects requires
programmer discipline to use correctly, and indirection and moving objects increases the
program’s testing cost.

There will be a small additional time overhead for each access of each object. Compacting
many objects can take a long time, reducing time performance. The amount of time required
can be unpredictable, so standard compaction is often unsuitable for real-time applications,
although there are more complex incremental compaction algorithms that may satisfy real-time
constraints, though such algorithms impose a further run time overhead.

v v v

Implementation
Here are some further issues to consider when implementing the COMPACTION pattern:

1. Compaction without Handles

You can compact memory without using explicit handles, provided that you can move objects
in memory and ensure they are referenced at their new location.

EPOC’s Packed Array template class, CArrayPakFlat, is one example of this approach
[Symbian 1999]. A Packed Array is a sequential array of items; each element in the packed

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 34

array contains its size, allowing you to locate the position of the next one. Inserting or deleting
an element involves moving all the subsequent elements; the entire array is reallocating and
copied if there is insufficient space. The template specialisation CArrayPak<TAny> even
allows variable-sized elements.

size size size

Locating an element by index is slow, though the implementation optimises for some situations
by caching the last item found.

Text editors that use an insertion cursor can also use compaction. Text only changes at the
cursor position; text before and after the cursor is static. So you can allocate a large buffer,
and store the text before the cursor at the start of the buffer and the text after the cursor at the
end. Text is inserted directly at the cursor position, without needing to reallocate any memory,
however, when the cursor is moved, each character it moves past must be copied from one end
of the buffer to the other.

Text before
cursor Text after cursor

Cursor position. New
text is added here.

In this case, the indirection is simply the location of the text following the cursor. You store a
static pointer to this, so any part of the application can locate it easily.

2. Object tables

If many objects are to be compacted together an object table gives better random access
performance at a cost of a little more memory. An object table contains all the handles
allocated together. Object tables make it easy to find every handle (and thus every object) in
the system, making compaction easier. You can store additional information, along with the
handle in each object table entry, such as a class pointer for objects, count fields for
REFERENCE COUNTING, mark bits for GARBAGE COLLECTION, and status bits or disk addresses
for PAGING.

3. Optimising Access to Objects. Using a direct pointer to an object temporarily can increase
execution speed compare with indirection through a handle or object table for every access.
But, consider the following:

SomeClass* p = handle.GetPointer(); // 1
p->FunctionWhichTriggersCompaction(); // 2
p->AnotherFunction(); // 3. p is now invalid!

If the function in line 2 triggers compaction, the object referred to by handle may have
moved, making the pointer p invalid. You can address this problem explicitly by allowing
handles to lock objects in memory while they’re being accessed; objects may not be moved
while they are locked. Locking does allow direct access to objects, but requires programmer
discipline to unlock objects that are not needed immediately, space in each handle to store a
lock bit or lock count, and a more complex compaction algorithm that avoids moving locked
objects. The PalmOS and MacOs operating systems support lockable handles to most memory
objects, so that their system heaps can be compacted [Apple 1985, Palm 2000].

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 35

4. Compacting Objects

In the simplest approach, objects are stored in increasing order of memory location. You can
compact the objects by copying each one in turn to the high water mark of the ones already
compacted.

A B C D

Copy

This approach works well when there is already a logical order on the objects, such as the
elements of a sequence. If the sequence is compacted whenever an object is deleted, half the
objects will be copied on average.

This does not work so well when objects are not stored in the correct order. In that case a better
approach is simultaneously to sort and compact objects by copying them into a different
memory space. Copying GARBAGE COLLECTION algorithms, for example, copy old objects into
a new memory space. Unused objects are not copied, but are discarded when the old space is
reused.

A BC D

A B C

5. Compacting on Demand

Persistent or long-lived objects can be compacted occasionally, often on user command. One
way to implement this is to store all the persistent objects on to SECONDARY STORAGE,
reordering them (as described above) as they are stored, then to read them back in. If the
objects are compacted rarely, then you can use direct pointers for normal processing, since the
time cost of finding and changing all the pointers is paid rarely and under user control.

6. C++ Handle classes

C++’s operator overloading facilities allow us to implement an object with semantics identical
to a pointer [Coplien 1994], but which indirects through the object table. Here’s an example of
a template class that we can use in place of a pointer to an object of class T. The Handle class
references the object table entry for the underlying object (hence tableEntry is a pointer to a
pointer), and redefines all the C++ pointer operations to indirect through this entry.

template <class T> class Handle {
public:

Handle(T** p) : tableEntry(p) {}
T* operator->() const { return ptr(); }
T& operator*() const { return *ptr(); }
operator T*() const { return ptr(); }

private:
T* ptr() const { return *tableEntry; }
T** tableEntry;

};

Example
The following Java example extends the MessageStore example described in the FIXED

ALLOCATION and VARIABLE ALLOCATION patterns. This version uses memory compaction to
permit variable size messages without wasting storage memory. Instead of storing each

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 36

message in its own separate fixed size buffer, it uses a single buffer to store all the messages,
and keeps just the lengths of each message. We’ve implemented this using FIXED ALLOCATION,
avoiding new outside the constructor.

The figure below shows the new message format:

To be, or not to be, that is the question.Whether 'tis noble

Message
Store

o say we end the heart-ache and the thousand natural shocks

r in the mind to suffer the slight and arrows or outrageous

fortune.Or to take arms against a sea of troubles and by op

posing end them.To die, to sleep - no more;And by a sleep t

that flesh is heir to.

1 2 3 4 5

Tis a consummation devoutly to be wished.
New

message
- fails

The CompactingMessageStore class has a messageBuffer to store characters, an array of
the lengths of each message, and a count of the number of messages in the store.

class CompactingMessageStore {
 protected char[] messageBuffer;
 protected int[] messageLengths;
 protected int numberOfMessages = 0;

The constructor allocates the fixed-sized arrays.
 public CompactingMessageStore(int capacity, int totalStorageCharacters) {
 messageBuffer = new char[totalStorageCharacters];
 messageLengths = new int[capacity];
 }

We can calculate the offset of each message in the buffer by summing the lengths of the
preceding messages:

protected int indexOfMessage(int m) {
 int result = 0;
 for (int i = 0; i < m; i++) {
 result += messageLengths[m];
 }
 return result;
 }

Adding a new message is simple: we just copy the new message to the end of the buffer. In this
implementation, overflow throws an exception rather than overwriting earlier messages as in
the FIXED ALLOCATION example.

 public void acceptMessage(char[] msg, int msgLength) {
 int endOffset = indexOfMessage(numberOfMessages);

 try {
 messageLengths[numberOfMessages] = msgLength;
 System.arraycopy(msg, 0, messageBuffer,
 endOffset, msgLength);
 }
 catch (ArrayIndexOutOfBoundsException e) {
 throw new OutOfMemoryError("Message store overflow");
 }

 numberOfMessages++;
 }

Compaction Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 37

Retrieving a message is straightforward:
 public int getMessage(int i, char[] destination) {
 System.arraycopy(messageBuffer, indexOfMessage(i),
 destination, 0, messageLengths[i]);
 return messageLengths[i];
 }

The interesting point is what happens when we remove messages from the buffer. To keep
everything correct, we have to copy all the messages after the one we’ve removed forward in
the buffer, and move the elements of the messageLengths array up one slot:

 public void deleteMessage(int i) {
 int firstCharToMove = indexOfMessage(i+1);
 int lastCharToMove = indexOfMessage(numberOfMessages);

 System.arraycopy(messageBuffer, firstCharToMove,
 messageBuffer, indexOfMessage(i),
 lastCharToMove - firstCharToMove);
 System.arraycopy(messageLengths, i+1, messageLengths, i,
 numberOfMessages - i - 1);

 numberOfMessages--;
 }

v v v

Known Uses
EPOC’s Font & Bitmap Server manages large bitmaps SHARED between several processes. It
keeps the data areas of large bitmaps (>4Kb) in a memory area with no gaps in it – apart from
the unused space at the top of the last page. When a bitmap is deleted the Server goes through
it's list of bitmaps and moves their data areas down by the appropriate amount, thereby
compacting the memory area. The Server then updates all its pointers to the bitmaps. Access
to the bitmaps is synchronised between processes using a mutex [Symbian 1999].

The Palm and Macintosh memory managers both use handles into a table of master pointers to
objects so that allocated objects can be compacted [Palm 2000, Apple 1985]. Programmers
have to be disciplined to lock handles while using the objects to which they refer.

The Sinclair ZX-81 (also known as the Timex Sinclair TS-1000) was based on compaction.
The ZX-81 supported an interactive BASIC interpreter in 1K of RAM; the interpreter tables
were heavily compacted, so that if you used lots of variables you could only have a few lines of
program code, and vice versa. The pinnacle of compaction was in the screen memory: if the
screen was blank, it would shrink so that only the end-of-line characters were allocated.
Displaying text on the screen caused more screen memory to be allocated, and everything else
in memory would be moved to make room.

See Also
FIXED ALLOCATION and POOLED ALLOCATION are alternative ways to solve the same problem.
By avoiding heap allocation during processing, they avoid fragmentation altogether.

PAGING, REFERENCE COUNTING, and GARBAGE COLLECTION can all use compaction and object
tables.

Many garbage collectors use for dynamic languages like Lisp, Java, and Smalltalk use
COMPACTION, with or without objects table and handles. Jones and Lins [1996] presents the
most important algorithms. The Smalltalk Blue Book [Goldberg and Robson 1983] includes a
full description of a Smalltalk interpreter that uses COMPACTION with an object table.

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 38

Reference Counting
How do you know when to delete a shared object?

• You are SHARING objects in your program

• The shared objects are transient, so their memory has to be recycled when they are no
longer needed.

• Interactive response is more important than overall performance.

• The space occupied by objects must be retrieved as soon as possible.

• The structure of shared objects does not form cycles.

Objects are often shared across different parts of components, or between multiple components
in a system. If the shared objects are transient, then the memory they occupy must be recycled
when they are no longer used by any client. Detecting when shared objects can be deleted is
often very difficult, because clients may start or stop sharing them at any time.

For example, the Strap-It-On Wrist-Mounted PC caches bitmaps displayed in its user interface,
so that each bitmap is only stored once, no matter how many windows it is displayed in. The
bitmaps are cached in a hash table that maps from bitmap IDs to actual bitmap objects. When
a bitmap is no longer required it should be deleted from the cache; in the illustration below,
bitmap B is no longer required and can be deleted.

Window 1

Window 2

Bitmap A

Bitmap B

0123

0345

The traditional way to manage memory for bitmaps displayed in windows is to allocate
bitmaps when windows are opened, and deallocate bitmaps when windows are closed. This
doesn’t work if the bitmaps are cached, because caching aims to use a pre-existing bitmap, if
one exists, and to deallocate bitmaps only when all windows that have used them are closed.
Deleting a shared bitmap when its first window closes could mean that the bitmap was no
longer available to other windows that need it.

Therefore: Keep a count of the references to each shared object, and delete each object when
its count is zero.

Every shared object needs to have a reference count field which stores the number of other
objects that point to it. A reference count must count all references to an object, whether from
shared objects, temporary objects, permanent objects, and references from global, local, and
temporary variables. The invariant behind reference counting is that an object’s reference count
field is accurate count of the number of references to the object. When an object’s reference
count is zero it has no references from the rest of the program; there is no way for any part of
the program to regain a reference to the object, so the object can be deleted. In the figure
below object C has a zero reference count and can be deleted:

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 39

B C

ED

A

1

2

0

1

When an object is allocated no other objects or variables can refer to it so its reference count is
zero. When a reference to the object is stored into a variable or into a field in another object,
the object’s reference count must be incremented, and similarly when a reference to an object is
deleted, the object’s reference count must be decremented. When an object’s reference count
gets back to zero, the object can be deleted and the memory it occupies can be recycled.

There are a couple of important points to this algorithm. First, an assignment to a variable
pointing to reference-counted objects involves two reference count manipulations: the reference
count of the old contents of the variable must be decremented, and then the reference count of
the new contents of the variable must be incremented. Second, if an object itself contains
references to reference counted objects, when the object is deleted all the reference counts of
objects to which it referred must be decremented recursively. After all, a deleted object no
longer exists so it cannot exercise any references it may contain. In the diagram above, once C
has been deleted, object E can be deleted and object D will have a reference count of one.

For example, the StrapItOn associates a reference count with each bitmap in the cache. When a
bitmap is allocated, the reference count is initialised to zero. Every window which uses a
bitmap must first send attach to the bitmap to register itself; this increases the bitmap’s
reference count. When a window is finished with a bitmap, it must send release the bitmap;
release decrements the reference count. When a bitmap’s reference goes back to zero, it must
have no clients and so deallocates itself.

Consequences
Like other kinds of automatic memory management, reference counting increases the program’s
design quality: you no longer need to worry about deleting dynamically allocated objects.
Memory management details do not have to clutter the program’s code, making the program
easier to read and understand, increasing maintainability. Memory management decisions are
made globally, and implicitly for the whole system, rather than locally and explicity for each
component. Reference counting also decreases coupling between components in the program,
because one component does not need to know the fine details of memory magement implement
in other components. This also makes it easier to reuse the component in different contexts with
different assumptions about memory use, further improving the system maintainability.

The overhead of reference counting is distributed throughout the execution of the program,
without any long pauses for running a garbage collector. This provides smooth and predictable
performance for interactive programs, and improves the real-time responsiveness of the
system.

Reference counting works well when memory is low, because it can delete objects as soon as
they become unreachable, recycling their memory for use in the rest of the system. Unlike
many forms of GARBAGE COLLECTION, REFERENCE COUNTING permits shared objects to release
external resources, such as file streams, windows, or network connections.

However:

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 40

Reference counting requires programmer discipline to correctly manipulate reference counts in
programs. If a reference to an object is created without incrementing the object’s reference
count, the object could be deallocated, even though the refrence is in use.

Reference counting does not guarantee that memory which the program no longer needs will be
recycled by the system, even if reference counts are managed correctly. Reference counting
deletes objects which are unrechable from the rest of the program. Programmer discipline is
required to ensure objects which are no longer required are no longer reachable, but this is
easier than working out when shared objects can be manually deleted.

Reference count manipulations imposes large a runtime overhead because they occur on every
pointer write; this can amount to ten or twenty percent of a programs running time. Allocating
memory for reference count fields can increases the memory requirements of reference counted
objects. Reference counting also increases the program’s memory requirements for stack
space to hold recursive calls when deleting objects objects.

Finally, reference counting doesn’t work for cycles of shared objects.

v v v

Implementation
Reference count manipulations and recursive deletion are basically local operations, affecting
single objects and happening at well defined times with respect to the execution of the program.
This means that programmers are likely to feel more “in control” of reference counting than
other GARBAGE COLLECTION techniques. This also means that reference counting is
comparatively easy to implement, however, there are a number of issues to consider when using
reference counting to manage memory.

1. Deleting Compound Objects. Shared objects can themselves share other objects. For
example, Strap-It-On’s bitmap cache could be extended to cache compound figures, where a
figure can be made up of a number of bitmaps or other figures (see below, where Figure A
includes Figure B).

Window 1

Window 2

Figure A

Figure B

0123

0345

When a reference counted object is deleted, if it refers to other reference counted objects, their
reference counts must also be decremented. In the illustration, if Figure A is destroyed, it
should decrease the reference count for Figure B.

Freeing reference counted objects is a recursive process: once an object’s reference count is
zero, it must reduce the reference counts of all the objects to which it refers; if those counts
also reach zero, the objects must be deleted recursively. Recursive freeing makes reference
counting’s performance unpredictable (although long pauses are very rare) and also can require
quite a large amount of stack memory. The memory requirements can be alleviated by
threading the traversal through objects’ existing pointers using pointer reversal (see the
EMBEDDED POINTER pattern), and the time performance by queuing objects on deletion and

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 41

recycling them on allocation. This is ‘lazy deletion’ – see Jones and Lins [1996] for more
details.

2. Cycles. Objects can form any graph structure and these structures may or may not have
cycles (where you can follow references from one object back to itself through the graph). The
structure in left illustration is acyclic; in the right illustration, C and E form a cycle.

B C

ED

A

1

2

1

1

B C

ED

A

1

2

2

1

Reference counting doesn’t work for cycles of shared objects, and such cycles can be quite
common: consider doubly linked lists, skip lists, or trees with both upward and downward
pointers. If two (or more) objects point to each other, then both of their reference counts can be
non-zero, even if there are no other references to the two objects. In the below, objects C and E
form a cycle. They will have reference counts of one, even though they should be deleted
because they are not accessible from any other object. In fact they would never be deleted by
reference counting, even if every other object was removed.

B C

ED

A

1

2

1

1

2.1 Breaking Cycles. One way of dealing with cycles is to require programmers to break
cycles explicitly, that is, before deleteing the last external reference to a cyclic structure of
objects, programmers should overwrite at least one of the references that creates the cycle with
nil. For example, you could remove the pointer from E to C in the figure above. After this,
the object structure no longer contains a cycle, so it can be recycled when the last external
reference to it is also removed. This requires programmer discipline to remember to nil out
the references that cause cycles.

2.2 Garbage Collectors. You can also implement a GARBAGE COLLECTOR as a backup to
reference counting, because garbage collectors can reclaim cyclic structures. The collection
can run periodically or/and whenever reference counting cannot reclaim enough memory. A
garbage collector requires more programmer effort than reference counting, and computation
must be stopped when it runs, costing processing time and decreasing interactive
responsiveness and therefore usability.

2.3 Cycle-Aware Reference Counting. Alternatively, there are more complex versions of the
basic reference counting algorithm that can handle cyclic structures directly, but they are not
often worth the implementation effort [Jones and Lins 1996].

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 42

3. Allocating the reference count field

Each reference counted object needs a reference count field which imposes a size overhead. In
theory a reference count field needs to be large enough to count references from every other
pointer in the system, requiring at least enough space for a full pointer to store the count.

In practice, most objects are pointed to by only a few other objects, so reference counts can be
made much smaller, perhaps only one byte. Using a smaller reference count can save a large
amount of memory, especially if the system contains a large number of small objects and has a
large word size. Smaller refernece counts raise the possibility that the counts can overflow. The
usual solution is called sticky reference counts: once a count field reaches its maximum value it
can never be decreased again. Sticky counts ensure that objects with many references will never
be recycled incorrectly, by ensuring they will never be collected, at least by reference counting.
A backup GARBAGE COLLECTOR can correct sticky reference counts and collect once widely
shared objects that have since become garbage.

4. Extensions

Because reference counting is a simple but inefficient algorithm, it lends itself to extensions and
optimisations.

4.1 Keeping Objects with a Zero Reference Count. Alternatively, if the objects represent
external objects and are held in a cache, then it may sometimes make sense to keep objects even
if their reference count is zero. This applies if the items are expensive to recreate, and there’s a
reasonable chance that they may be needed again. In this case, you use reference counts as a
guide in most situations, but you can implement CAPTAIN OATES and delete unused objects
when the memory cost of keeping them outweighs the cost of recreating them later.

4.2 Finalisation. Unlike more efficient forms of garbage collection, reference counting
explicitly deletes unreachable objects. This makes it easy to support finalisation, that is,
allowing objects to execute special actions just before they are about to be deleted. An objects
finalisation action is executed once its reference counts reaches zero but before decrementing
the objects it references and before recycling its memory. Finalisation code can increase an
object’s reference count, so deletion should only proceed if the reference count is still zero after
finalisation.

4.3 Optimisations. Reference counting imposes an overhead on every pointer assignment or
copy operation. You can optimise code by avoiding increment and decrement operations when
you are sure an object will never be deallocated due to a given reference, typically because you
have at least one properly reference-counted valid reference to the object. More sophisticated
reference counting schemes, such as deferred reference counting [Jones and Lins 1996, Deutsch
and Bobrow 1976], can provide the benefits of this optimisation without the difficulties, though
with a slightly increased runtime overhead and substantially more programmer effort.

Example
This C++ example implements an object large enough to justify sharing and therefore reference
counting. A ScreenImage contains a screen display of pixels. We might use it as follows:

 {
 ScreenImage::Pointer image = new ScreenImage;
 image->SetPixel(0, 0);
 // And do other things with the image object...
 }

When image goes out of scope at the terminating brace, the ScreenImage object will be
deleted, unless there are other ScreenImage::Pointer objects referencing it.

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 43

The implementation of ScreenImage must have a reference count somewhere. This
implementation puts it in a base class, ReferenceCountedObject.
 typedef char Pixel;

class ScreenImage : public ReferenceCountedObject {
 Pixel pixels[SCREEN_WIDTH * SCREEN_HEIGHT];

The reference counting pointer template class requires a lot of typing to use; for convenience
we define a typedef for it:

public:
 typedef ReferenceCountingPointer<ScreenImage> Pointer;

And here are a couple of example member functions:
 void SetPixel(int i, Pixel p) { pixels[i] = p; }
 Pixel GetPixel(int i) { return pixels[i]; }
};

1. Implementation of ReferenceCountedObject

The class ReferenceCountedObject contains the reference count, and declares member
functions to manipulate it. The DecrementCount operation can safely delete the object, since
it doesn’t access its this pointer afterward. Note the virtual destructor, so that deletion invokes
the correct destructor for the derived class.

class ReferenceCountedObject {
private:
 int referenceCount;
public:
 void IncrementCount() { referenceCount++; }
 void DecrementCount() { if (--referenceCount == 0) delete this; }
protected:
 ReferenceCountedObject() : referenceCount(0) {}
 virtual ~ReferenceCountedObject() { }
};

2. Implementation of the smart pointer, ReferenceCountingPointer

This is another example of the C++ Smart Pointer idiom. It uses the pointer operator (->) to
make an instance have the same semantics as a C++ pointer, and manages the reference counts:

template <class T> class ReferenceCountingPointer {
private:
 T* pointer;
 void IncrementCount() { if (pointer) pointer->IncrementCount(); }
 void DecrementCount() { if (pointer) pointer->DecrementCount(); }

To keep the reference counts correct, it needs all the ‘Canonical Class Form’ [Ellis and
Stroustrup 1990]: default constructor, copy constructor, assignment operator and destructor:

public:
 ReferenceCountingPointer() : pointer(0) {}
 ReferenceCountingPointer(T* p)
 : pointer(p) { IncrementCount(); }
 ReferenceCountingPointer(const ReferenceCountingPointer<T>& other)
 : pointer(other.pointer) { IncrementCount(); }
 ~ReferenceCountingPointer() { DecrementCount(); }

The assignment operator is particularly complicated, since it may cause the object originally
referenced to be deleted. Note how, as always, we have to check for self-assignment and to
return a reference to *this [Meyers 1992].

Reference Counting Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 44

 const ReferenceCountingPointer<T>&
 operator=(const ReferenceCountingPointer<T>& other) {
 if (this != &other) {
 DecrementCount();
 pointer = other.pointer;
 IncrementCount();
 }
 return *this;
 }

The ‘smart’ operations, though, are simple enough:
 T* operator->() const { return pointer; }
 T& operator*() const { return *pointer; }

And finally we need a couple more operators if we want to use the smart pointers in STL
collections, since some STL implementations require a comparison operator [Austern 1999]:

 bool operator<(const ReferenceCountingPointer<T>& other) const {
 return pointer < other.pointer;
 }
 bool operator==(const ReferenceCountingPointer<T>& other) const {
 return pointer == other.pointer;
 }
};

v v v

Known Uses
Reference counting is part of the garbage collection implementation provided in some language
environments. These implementations are invisible to the programmer, but improve the time
performance of memory management by deferring the need for a garbage collection process.
The limbo language for programming embedded systems used reference counting, because it
doesn’t pause computation, and because it allows external objects (menus and popup windows,
for example) to be deleted immediately they are no longer used. [Pike 1997]. Smalltalk-80 and
VisualWorks\Smalltalk prior to version 2.5 similarly used reference counting for reasons of
interactive performance [Goldberg and Robson 1983; ParcPlace 1994].

Microsoft’s COM framework has a binary API based on Microsoft C++’s VTBL
implementation. COM uses reference counting to allow several clients to share a single COM
object [Box 1998].

UNIX directory trees provide a good example of a directed acyclic graph. The UNIX ln
command allows you to create ‘hard links’, alternative names for the same file in different
directories. A file is not deleted until there are no hard links left to it. Thus each UNIX low-
level file object (inode) contains a reference count of the number of links to it, and the ln
command will fail if you try to use it to create a cycle [Kernighan and Pike 1984].

See also
Modern memory management research has focused on GARBAGE COLLECTION rather than
reference counting, to improve system’s overall time performance [Jones and Lins 1996].

The particular implementation we’ve used in the example section is the COUNTED POINTER

idiom described in [Buschman et al 1996] and [Coplien 1994].

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 45

Garbage Collection
Also Known As: Mark-sweep Garbage Collection, Tracing Garbage Collection.

How do you know when to delete shared objects?

• You are SHARING objects in your program

• The shared objects are transient, so their memory has to be recycled when they are no
longer needed.

• Overall performance is more important than interactive or real-time responsiveness.

• The structure of the shared objects does form cycles.

You are SHARING dynamically allocated objects in your program. The memory occupied by
these objects needs to be recycled when they are no longer needed. For example, the Strap-It-
On’s DailyFreudTimer application implements a personal scheduler and psychoanalyst using
artificial intelligence techniques. DailyFreudTimer needs many dynamically allocated objects
to record potential time schedules and psychological profiles modelling the way you spend your
week. As it runs, DailyFreudTimer continually creates new schedules, evaluates them, and
then rejects low-rated schedules in favour of more suitable ones, discarding some (but not all)
of the objects it has created so far. The application often needs to run for up to an hour before
it finds a schedule which both means you get all you need to done this week, and also that you
are in the right psychological state at the right time to perform each task.
Objects are often shared within components, or between multiple components in a system.
Determining when shared objects are no longer used by any client can be very difficult,
especially if there are a large number of shared objects. Often, too, the structure of those
objects forms cycles, making REFERENCE COUNTING invalid as an approach.

Therefore: Identify unreferenced objects, and deallocate them.

To do garbage collection, you suspend normal processing in the system, and then follow all the
object references in the system to identify the objects that are still reachable. Since other
objects in the system cannot be referenced now, it follows that they’ll never be accessible in
future (where could you obtain their references from?). In fact, these unreferenced objects are
garbage, so you can deallocate them.
To find all the referenced objects in the system, you’ll need to start from all the object
references available to the running system. The places to start are called the root set:

• Global and static variables,

• Stack variables, and perhaps

• References saved by external libraries

Starting from these, you can traverse all the other active objects in your runtime memory space
by following all the object references in every object you encounter. If you encounter the same
object again, there’s no need to examine its references a second time, of course.
There are two common approaches to removing the inactive objects:

• Mark-sweep Garbage Collectors visit all the objects in the system, de-allocating the
inactive ones.

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 46

• Copying Garbage Collectors copy the active objects to a different area, MEMORY

DISCARDing the inactive ones.

For example, StrapItOn implements mark-sweep collection for its schedule and profile objects
in the DayFreudTimer. It keeps a list of every such object, and associates a mark bit each.
When DayFreudTimer runs out of memory, it suspends computation and invokes a garbage
collection. The collector traces every active object from a set of roots (the main
DayFreudTimerApplication object), recursively marks the objects it finds, and then sweeps
away all unmarked objects.

Consequences
GARBAGE COLLECTION can handle every kind of memory structure. In particular, it can collect
structures of objects containing cycles with no special effort or discipline on behalf of the
programmer. There’s generally no need for designers to worry about object ownership or
deallocation, and this improves design quality and thus the maintainability of the system.
Similarly it reduces the impact of local memory-management choices on the global system.
GARBAGE COLLECTION does not impose any time overhead on pointer operations, and has
negligible memory overhead per allocated object. Overall it is usually more time efficient than
REFERENCE COUNTING, since there is no time overhead during normal processing.

However: Garbage collection can generate big pauses during processing. This can disrupt the real-
time response of the system, and in User Interface processing tend to impact the usability of
the system. In most systems it’s difficult to predict when garbage collection will be required,
although special purpose real-time algorithms may be suitable. Garbage objects are collected
some time after they become unreachable, so there will always appear to be less free memory
available that with other allocation mechanisms.

Compared with REFERENCE COUNTING, most garbage collectors will need more free space in the
heap (to store garbage objects between collections phases), and will be less efficient when the
application’s memory runs short. Garbage collectors also have to be able to find the global
root objects of the system, to start the mark phase traversal, and also need to be able to find all
outgoing references from an object. In contrast, REFERENCE COUNTING only needs to track
pointer assignments.
Finally, the recursive mark phase of a Mark-sweep collector needs stack space to run, unless
pointer reversal techniques are used (see the EMBEDDED POINTER pattern).

v v v

Implementation
Garbage collectors have been used in production systems since the late 1960s, but still people
are afraid of them. Why? Perhaps the most important reasons is the illusion of control and
efficiency afforded by less sophisticated forms of memory management, such as static
allocation, manually deallocated heaps, or stack allocation, especially as many (badly tuned)
garbage collectors can impose random pauses in a program's execution. Stack allocation took
quite some time to become as accepted as it is today (many FORTRAN and COBOL
programmers still shun stack allocation), so perhaps garbage collection will be as slow to make
its way into mainstream programming.

In systems with limited memory, garbage collectors have even less appeal than REFERENCE

COUNTING and other more positive forms of memory management. But if you have complex
linked structures then a simple garbage collector will be at least as efficient and reliable as
manual deallocation code.

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 47

We can only present a brief overview of garbage collection in the space of one pattern.
Garbage Collection, by Richard Jones with Raphael Lins [1996] is the standard reference on
garbage collection, and well worth reading if you are considering implementing a garbage
collector.
1. Programming with Garbage Collection

Programming with Garbage Collection is remarkably like programming without garbage
collection, except that it is easier, because you don't have to worry about explicitly freeing
objects, juggling reference counts, or breaking cycles. It is quite possible to control the
lifetimes of objects in a garbage-collected system just as closely as in a manually managed
system, following three simple insights:

• If "new" is never called, objects are never allocated.
• If objects never become unreachable, they will never be deallocated
• If objects are never allocated or deallocated, the garbage collector should never

run.

The first point is probably the most important: if you don't allocate objects you should not need
any dynamic memory management. In languages that are habitually garbage collected it can be
more difficult to find out when objects are allocated, for example, some libraries will allocate
objects willy-nilly when you do not expect them to. Deleting objects in garbage collected
systems can be difficult: you must find and break every pointer to the object you wish to delete
[Lycklama 1999].

2. Finalisation and Weak References

Certain kinds of object may own, and thus need to release non-memory resources such as file
handles, graphics resources or device connections. These objects need to implement
finalisation methods to do this release.

Finalisation can be quite hard to implement in many garbage collectors. You generally don't
want the main sweeping thread to be delayed by calling finalisation, so you have to queue
objects for processing by a separate thread. Even if supported well, finalisation tends to be
unreliable because the precise time an object is finalised depends purely on when the garbage
collector runs.

Some garbage collectors support weak references, references that are not traced by the
collector. Unlike normal references, an object pointed to by a weak reference will become
garbage unless at least one normal reference also points to the object. If the object is deleted,
all the weak references are usually automatically replaced with some nil value. Weak
references can be useful when implementing caches, since if memory is low, unused cached
items will be automatically released.
3. Mark-Sweep Garbage Collection

A mark-sweep garbage collector works by stopping the program, marking all the objects that
are in use, and then deleting all the unused objects in a single clean sweep. Mark-sweep
garbage collection requires only one mark bit per object in the system. This bit can often be
PACKED within some other field in the object – perhaps the first pointer field since this bit is
only every set during the garbage collection phases; during the main computation this bit is
always zero.
When an object is allocated, its mark bit is clear. Computation proceeds normally, without any
special actions from the garbage collector: object references can be exchanged, fields can be
assigned to, and, if their last reference is assigned to another object or to nil, objects may

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 48

become inaccessible. When memory is exhausted, however, the main program is paused, and
the marking and sweeping phases of the algorithm are executed.
Figure XX shows a system with five objects. Object A is the root of the system, and objects B
and D are accessible from it. Objects C and E are not accessible from A, and so strictly are
garbage. However they make up a ‘cycle’, so REFERENCE COUNTING, however, could not
delete them.

B C

ED

A

Figure 7: Before Garbage Collection

Mark-sweep garbage collection proceeds in two phases. First, the mark phase recursively
traces every inter-object reference in the programming, beginning from a root set, such as all
global variables and all variables active on the stack. When the mark phase reaches an
unmarked object, it sets the object’s mark bit, and recursively visits all the object’s children.
After the mark phase, every object reachable from the root set is marked: objects unreachable
from the root set are unmarked.
The figure below shows the state of the objects after the mark phase. The marked objects are
drawn with shaded backgrounds. A, B and D are marked because they are reachable from the
root of the system. C and E are not marked.

Figure 8: After the mark phase

Second, the sweep phase visits every object on the heap: that is, every object active at the end
of the last sweep phase plus every object allocated since then. Whenever the sweep phase finds
a marked object, it clears its mark bit (to be ready for the next mark phase). Whenever the
sweep phase finds an unmarked object, it recycles the memory used by that object, running the
object’s finalisation code, if it has any.

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 49

Figure 9: After the sweep phase

Considering the example, the sweep phase visits every object in an arbitrary order, deleting
those who do not carry the mark. So after the sweep phase only objects A, B and D remain; the
unmarked C and E objects have been deleted.
Mark-sweep works because it explicitly interprets the idea of an active or live object. Live
objects must be reachable either directly from the root set (global variables, stack variables,
and perhaps references saved by external libraries), or via chains of references through objects
starting from the root set. The mark phase marks just those objects that meet this criterion, and
then the sweep phase eliminates all the garbage objects that do not.
3. Copying Garbage Collectors

Modern workstation garbage collectors are typically based on object copying, rather than
mark-sweep, thus implementing a form of COMPACTION. A simple copying collector allocates
twice as much virtual memory as it needs, in two hemispheres. While the system is running, it
uses only one of these hemispheres, called the "fromspace", containing all the existing objects
packed together at one end. New objects are allocated following directly after the old objects,
simply by incrementing a pointer (just as cheaply as stack allocation). When the fromspace is
full, the normal program is paused, and all fromspace objects are traversed recursively,
beginning from the roots of the system.

A copying collector's traversal differs from a marking collector's. When a copying collector
reaches an object in fromspace for the first time (note that by definition, a reachable object is
not garbage) it copies that object into the other hemisphere (the tospace). It then replaces the
fromspace object with a forwarding pointer to the tospace version. If the copy phase reaches a
forwarding pointer, that pointer must come from an object already copied into the tospace, and
the tospace object's field is updated to follow the forwarding pointer into the tospace. Once no
more objects can be copied, the tospace and fromspace are (logically) swapped, and the system
continues to execute.

More sophisticated copying collectors allocate two hemispheres for only the recently created
objects, moving longer-lived objects into a separate memory space [Ungar 1984; Hudson and
Moss 1992].

Copying collectors have a number of advantages over Mark-sweep collectors. Copying
collectors avoid fragmentation, because the act of copying also compacts all the active objects.
More importantly, copying collectors can perform substantially better because they have no
sweep phase. The time required to run a copying collector is based on copying all live objects,
rather than marking live objects plus sweeping through every object on the heap, allocated and
garbage. On the other hand, copying collectors move objects around as the program runs,
costing processing time; require more virtual memory than a simpler collector, and are more
difficult to implement.

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 50

Example
This example illustrates a CollectableObject class that supports mark-sweep garbage
collection. Every object to garbage collect must derive from CollectableObject. The static
method CollectableObject::GarbageCollect does the GARBAGE COLLECTION.

For example, we might implement a Node class with ‘left’ and ‘right’ pointers as in
Implementation Section “3. Mark-Sweep Garbage Collection”. Node derives from
CollectableObject, and every instance must be allocated on the heap:

class Node : public CollectableObject {
private:
 Node* left;
 Node* right;
public:
 Node(Node* l = 0, Node* r = 0) : left(l), right(r) {}
 ~Node() {}
 void SetLinks(Node* l, Node* r) { left = l; right = r; }

The only special functionality Node must provide is a mechanism to allow the Garbage
Collector to track all its references. This implementation uses a TEMPLATE FUNCTION,
GetReferences, declared in the base class. GetReferences must call HaveReference for
each of its references [Gamma 1995]. For convenience a call to HaveReference with a null
pointer has no effect.

private:
 void GetReferences() {
 HaveReference(left);
 HaveReference(right);
 }
};

Then we can allocate Node objects into structures, and they will be garbage collected. This
implementation of Mark-Sweep garbage collection uses the normal ‘delete’ calls, invoking
Node’s destructor as normal. For example we might set up the structure in the illustration:

B C

ED

A

 Node* E = new Node(0, 0);
 Node* D = new Node(0, 0);
 Node* C = new Node(D, E);
 Node* B = new Node(0, D);
 Node* A = new Node(B, C);
 E->SetLinks(0, C);

An initial Garbage Collection will have no effect:
 CollectableObject::GarbageCollect(A);

However when we remove the reference from A to C, a second garbage collection will delete C
and E:

 A->SetLinks(B, 0);
 CollectableObject::GarbageCollect(A); // Deletes C and E

Finally, we can do a garbage collection will a null root node, to delete all the objects:
 CollectableObject::GarbageCollect(0);

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 51

1. Implementation of the Garbage Collector

The garbage collector uses a single class, CollectableObject. Every CollectableObject
maintains one extra field, the markBit for use by the collector. Every CollectableObject
enters a collection allCollectableObjects, so that they can be found during the sweep
phase.

class CollectableObject {
friend int main();
private:
 bool markBit;
public:
 CollectableObject();
 virtual ~CollectableObject();
 virtual void GetReferences() = 0;
 void HaveReference(CollectableObject* referencedObject);
private:
 void DoMark();

2. The Garbage Collection Functions

The main Garbage Collector functionality is implemented as static functions and members in
the CollectableObject class. We use a doubly-linked list, or deque, for the collection of all
objects, since this is very efficient at adding entries, and at removing them via an iterator:

 typedef deque<CollectableObject *> Collection;
 static Collection allCollectableObjects;
public:
 static void GarbageCollect(CollectableObject* rootNode);
private:
 static void MarkPhase(CollectableObject* rootNode);
 static void SweepPhase();
};

The main GarbageCollect function is simple:
/*static*/
void CollectableObject::GarbageCollect(CollectableObject* rootNode) {
 MarkPhase(rootNode);
 SweepPhase();
}

The mark phase calls DoMark on the root object, if there is one; this will recursively call
DoMark on all other active objects in the system:

/*static*/
void CollectableObject::MarkPhase(CollectableObject* rootNode) {
 if (rootNode)

 rootNode->DoMark();
}

The sweep phase is quite straightforward. We simply run down every object, and delete them if
they are unmarked. If they are marked, they are still in use, so we simply reset the mark bit in
preparation for subsequent mark phases:

/*static*/
void CollectableObject::SweepPhase() {
 for (Collection::iterator iter = allCollectableObjects.begin();
 iter != allCollectableObjects.end();) {
 CollectableObject* object = *iter;
 if (!object->markBit) {
 iter = allCollectableObjects.erase(iter);
 delete object;
 } else {
 object->markBit = false;
 ++iter;
 }
 }
}

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 52

2. Member functions for CollectableObject:

The constructor for CollectableObject initialises the mark bit to ‘unmarked’, and adds itself
to the global collection:

CollectableObject::CollectableObject()
 : markBit(false) {
 (void)allCollectableObjects.push_back(this);
}

We also need a virtual destructor, as derived instances will be destructed as instances of
CollectableObject.

/*virtual*/
CollectableObject::~CollectableObject()
{}

The DoMark function recursively sets the mark bit on this object and objects it references:
void CollectableObject::DoMark() {
 if (!markBit) {
 markBit = true;
 GetReferences();
 }
}

And similarly the HaveReference function is invoked by the GetReferences functions in
derived classes:

void CollectableObject::HaveReference(CollectableObject* referencedObject) {
 if (referencedObject != NULL)
 referencedObject->DoMark();
}

A more robust implementation would replace the recursion in this example with iteration, to
avoid the problems of stack overflow. A more efficient implementation might use POOLED

ALLOCATION of the CollectableObjects, or might use an EMBEDDED POINTER to implement
the allCollectableObjects collection.

v v v

Known Uses
Any dynamic language with real pointers needs some form of garbage collection — Lisp,
Smalltalk, Modula-3,and Java are just some of the best-known garbage collected languages.
Garbage collection was originally specified as part of Ada, although this was subsequently
deferred, and has been implemented many times for C++, and even for C [Jones and Lins
1996].
Mark-sweep garbage collectors are often used as a backup to reference counting systems, as in
some implementations of Smalltalk, Java, and Inferno [Goldberg and Robson 1983, Pike
1997]. The Mark-sweep collector is executed periodically or when memory is low, to collect
cycles and objects with many incoming references that would be missed by reference counting
alone.

See Also
REFERENCE COUNTING is an alternative to this pattern that imposes a high overhead on every
pointer assignment, and cannot collect cycles of references.

Systems that make heavy use of SHARING may benefit from some form of Garbage Collection.
Garbage Collection can also be used to unload PACKAGES from Secondary Storage
automatically when they are no longer required.

Garbage Collection [Jones and Lins 1996] is a very comprehensive survey of a complex field.
Richard Jones’ garbage collection web page [Jones 2000] and the Memory Management

Garbage Collection Small Memory Software by Weir, Noble

© 2000 Charles Weir, James Noble Page 53

Reference Page [Xanalys 2000] contain up-to-date information about garbage collection. Paul
Wilson [1994] has also written a critical overview of garbage collection techniques.

