Small Data Structures UNTITLED by Weir, Noble

Small Data Structures
Version 13/06/00 02:15 - 33 by Charles Weir

How can you reduce the memory needed for your data?

The memory requirements of the data exceed the memory available to the system.

Y ou want to increase usability by allowing users to store as much of their data as
possible.

Y ou need to be able to predict the program’s use of memory.
Y ou cannot delete some of the data from the program.

The fundamental difference between code and data is that programmers care about code while
users care about data. Programmers have some direct control over the size of their code (after
all, they writeit!), but the data size is often completely out of the programmers’ control.
Indeed, given that a system is supposed to store users’ data, any memory allocated to code,
buffers, or other housekeeping is really overhead as far as the user is concerned. Often the
amount of memory available to users can make or break a systems usability — a word
processor which can store a hundred thousand word document is much more useful than one
which are only store a hundred words.

Data structures that are appropriate where memory is unrestricted may be far too prodigal
where memory is limited. For example, atypical implementation of an address database might
store copies of information in indexes as well as the actual data, effectively storing everything
in the database twice. Porting such an approach to the Strap-It-On wrist-top PC would halve
the number of addresses that could be stored in the database.

Techniques like ComPRESSION @and USing SECONDARY STORAGE Can reduce a program’s main
memory requirements, but both have significant liabilities when used to manage the data a
program needs to work on. Many kinds of compressed data cannot be accessed randomly; if
random access is required the data must be uncompressed first, costing time, and requiring a
large amount of buffer memory for the uncompressed data. Data stored on secondary storageis
similarly inaccessible, and needs to be copied into main memory buffers beforeit can be
accessed.

Ther efore: Choose the smallest structure that supports the operations you need.

For any given data set there are many different possible data structures that might support it.
Suppose, for example, you need an unordered collection of object references with no duplicates
— in mathematical terms, a set. You could implement it using a linear array of pointers, using a
hash table, or using a variety of tree structures. Most class libraries will provide several
different implementations of such collections; the best one to choose depends on your
requirements. Where memory is limited, therefore, you must be particularly careful to choose
a structure to minimise the program’s memory requirements.

You can think of data structure design as a three-stage process. First analyse the program’s
reguirements to determine the information the program needs to store; unnecessary information
reguires no memory!

Second, analyse the characteristics of the data; what’ s its total volume; how doesit vary over a
single program run and across different runs; and what’s its granularity — does it consist of a
few large objects or many small objects? You can also analyse the way you' |l access the data:
whether it is read and written, or only ever read; whether it is accessed sequentially or
randomly; whether elements are inserted into the middle of the data or only added at the end.

© 1999 Charles Weir, James Noble Page 1



Small Data Structures UNTITLED by Weir, Noble

Third, choose the data structures. Consider as many different possibilities as you can — your
standard class libraries will provide some basic building blocks, but consider also options like
embedding objects (FIXED ALLOCATION), EMBEDDING POINTERS, Of PACKING the DATA. For each
candidate data structure design, work out the amount of memory it will require to store the data
you need, and check that it can support all the operations you need to perform. Then consider
the benefits and disadvantages of each design: for example a smaller data structure may require
more processing time to access, provide insufficient flexibility or give insufficient real-time
performance. You'll need also to evaluate the resulting memory requirements for each
possibility against the total amount of memory available — in some cases you may need to do
simpletrials using scratch code. If none of the solutions are satisfactory you may need to go
back and reconsider your earlier analysis, or even the requirements of the system as awhole.
On the other hand there' s no need to optimise memory use beyond your given requirements (see
the THRESHOLD SwiTcH pattern [Auer and Beck 1996]).

For example, the Strap-1t-On™ address program has enough memory to store the address
records but not indexes. So its version of the address program uses a sorted data structure that
does not need extra space for an index but that is slower to access than the indexed version.

Consequences

Choosing suitable data structures can reduce a program’ s memory requirements, and thetime
spent can increase the quality of the program’s design.

By increasing the amount of users’ information the program can store, careful data structure
design can increase a program’ s usability.

However: analysing a program’ s requirements and optimising data structure design takes programmer
discipline to do, and programmer effort and time to do well.

Optimising data structure designs to suit limited memory situations can restrict a program’'s
scalability should more memory become available.

The predictability of the program’s memory use, the testing costs, and the program’ stime
performance may or may not be affected, depending upon the chosen structures.

@, @, @,
0’0 0’0 0’0

I mplementation

Every data structure design for any program must trade off several fundamental forces:
memory reguirements, time performance, and programmer effort being the most important.
Designing data structures for a system with tight memory constraints is no different in theory
from designing data structures in other environments, but the practical tradeoffs can result in
different solutions. Typically you are prepared to sacrifice time performance and put in more
programmer effort than in an unconstrained system, in order to reduce the memory
requirements of the data structure.

There are several particular issues to consider when designing data structures to minimise
memory use:

1. Predictability ver sus Exhaustion

The predictability of a data structure’' s memory use, and ultimately of the whole program can
be asimportant as the structure' s overall memory requirements, because making memory use
more predictable makes it easier to manage. Predictability is closdy related to the need to deal
with memory exhaustion: if you can predict the program’s maximum memory use in advance
then you can use FiIXep ALLOCATION to ensure the program will never run out of memory.

© 1999 Charles Weir, James Noble Page 2



Small Data Structures UNTITLED by Weir, Noble

2. Space ver sus Flexibility

Simple, static, inflexible data structures usually require less memory than more complex,
dynamic, and flexibly data structures. For example, you can implement a one-to-one
relationship with a single pointer or even an inline object (see FIxep ALLocATION), while a one-
to-many relationship will require collection classes, arrays, or EMBEDDED PoINTERS. Similarly,
flexible collection classes require more memory than simple fixed sized arrays, and objects
with methods or virtual functions require more memory than simple records (C++ st r uct s)
without them. If you don’t need flexibility, don't pay for it; use simple data structures that
need less memory.

3. Calculate versus Store

Often you can reduce the amount of main memory you need by calculating information rather
than storing it. Calculating information reduces a program’ s time performance and can
increase its power consumption, but can also reduce its memory requirements. For example,
rather than keeping an index into a data structure, you can traverse the whole data structure
using a linear search. Similarly, the PReEseNTER pattern [Vlissides 1998] describes how
graphical displays can be redrawn from scratch rather than being updated incrementally using
a complex object structure.

Specialised Patterns

This chapter contains five specialised patterns that describe a range of techniques for designing
data structures to minimise memory requirements. The following figure shows the relationships

between the patterns.
Memory
Allocation

Copy on Write

Data Structures

Multiple
Representations

Va
Packed Data
Fixed Embedded
Allocation Pointer
Secondary
Storage

Figure 1: Data Structure Pattern Relationships

Garbage
Collection

Reference
Counting

Compression

PackeD DATA sdlects suitable internal representations of the data e ementsin an object, to
reduce its memory footprint.

SHARING removes redundant duplicated data. Rather than using multiple copies of functions,
resources or data, the programmer can arrange to store only one copy, and use that
copy wherever it is needed.

CoPY-ON-WRITE extends SHARING S0 that shared objects can be modified without affecting other
client objects that use the shared objects.

© 1999 Charles Weir, James Noble Page 3



Small Data Structures UNTITLED by Weir, Noble

EmMBEDDED PoINTERS reduce the memory requirements for collection data structures, by
eiminating auxiliary link objects and moving pointers into the data objects stored in
the structures.

MULTIPLE REPRESENTATIONS are effective when no single representation is simultaneously
compact enough for storage yet efficient enough for actual use.

Known Uses
Like Elvis, data structures are everywhere.

The classic example of designing data structures to save memory is the technique of allocating
only two BCD digits to record the year when storing dates [Y ourdon 2000]. This had
unfortunate consequences, although not the disasters predicted in the lead-up to the millennium
[Berry, Buck, Mills, Stipe 1987]. Of course these data structure designs were often made for
the best of motives: in the 1960s disk and memory was much more expensive than it is today;
and allocating two extra characters per record could cost millions.

An object-oriented database built using Smalltalk needed to be scaled up to cope with millions
of objects, rather than several thousand. Unfortunately, a back-of-the envelope calculation
showed that the existing design would require a ridiculous amount of disk space and thus
buffer memory. Examination of the database design showed that Smalltalk Dictionary (hash
table) objects occupied a large proportion of its memory; further investigation showed and that
these Dictionaries contained only two dements: a date and atime. Redesigning the database to
use Smalltalk Timestamp objects that stored a date and time directly, rather than the dictionary,
reduced the number of objects heeded to store each timestamp from at least eight to three, and
made the scaled-up database project feasible.

See also

Once you have designed your data structures, you then have to allocate the memory to store
them. The MEMORY ALLOCATION chapter presents a series of patterns describing how you can
allocate memory in your programs.

In many cases, good data structure design aloneis insufficient to manage your program’s
memory. The ComprEssioN chapter describes how memory requirements can be reduced by
explicitly spending processor time to build very compact representations of data that generally
cannot be used directly in computations. Maoving less important data into SECONDARY STORAGE
and constant data into READ-oNLY MEMORY can reduce the demand for writable primary storage
further.

There are many good books describing data structure design in depth. Knuth [1997] remains a
classic, though its examples are, effectively, in assembly language. Hoare [1972] is another
seminal work, though nowadays difficult to find. Aho, Hopcroft and Ullman [1983] isa
standard text for university courses, with examples in a Pascal-style pseudo-code, Cormen et al
[1990] is a more in-depth Computer Science text, emphasising the mathematical analysis of
algorithms. Finally Segewick’s series beginning with Algorithms [1988] provide a more
approachable treatment, with editions quoting source code in different languages — for example
Algorithmsin C++: Fundamentals, Data Structures, Sorting, Searching, [Segewick 1999]

© 1999 Charles Weir, James Noble Page 4



Packed Data UNTITLED by Weir, Noble

Packed Data
Also known as: Bit Packing

How can you reduce the memory needed to store a data structure?

Y ou have a data structure (a collection of objects) that has significant memory
reguirements.

Y ou need fast random access to every part of every object in the structure.
Y ou need to store the data in these objects in main memory.

No matter what else you do in your system, sooner or later you end up having to design the
low-levd data structures to hold the information your program needs. In an object-oriented
language, you have to design some key classes whose objects store the basic data and provide
the fundamental operations on that data. In a program of any size, although there may be only
afew key data storage classes, there can be alarge number of instances of these classes.
Storing all these abjects can require large amounts of memory, certainly much more than
storing the code to implement the classes.

For example, the Strap-1t-On’s I nsanity-Phone application needs to store all of the names and
numbers in an entire local telephone directory (200,000 personal subscribers). All these names
and numbers should just about fit into the Strap-1t-On’s memory, but would leave no room for
the program than displayed the directory, let alone any other program in the Wrist-Top PC.

Because these objects (or data structures) are the core of your program, they need to be easily
accessible as your program runs. In a program of any complexity, the objects will need to be
accessed randomly (rather than in any particular order) and then updated. Taken together,
random access with updating requires that the objects are stored in main memory.

Y ou might consider using ComPRESSION 0n each object or on a set of objects, but this would
make processing slow and difficult, and makes random access to the objects using references
amost impossible. Similarly, moving objects into SeconpARY STORAGE is not feasibleif the
objects need to be accessed rapidly and frequently. Considering the Insanity-Phone example
again, the data cannot be placed in the Strap-1t-On’ s secondary memory because that would be
too slow to access; and the data cannot be compressed effectively while maintaining random
access because each record is too small to compressed individually using standard adaptive
compression algorithms.

Therefore: Pack data items within the structure so that they occupy the minimum space.
There are two ways to reduce the amount of memory occupied by an object:
1. Reduce the amount of memory required by each field.
2. Reduce the amount of unused memory allocated between fields.

Consider each individual field in turn, and consider how much information that field really
needs to store. Then, chose the smallest possible representation for that information. This may
be the smallest suitable language level-data type, or even smaller, using different bits within,
say, a machine word to encode different data items.

Once you have analysed each fidd, analyse the class as a whole to ensure that extra memory is
not allocated between fields. Compilers or assemblers often ensure that fields are aligned to
take advantage of CPU instructions that make it easier to access aligned data, so, for example,
all two-byte fields be stored at even addresses, and all four-byte fields at addresses that are

© 1999 Charles Weir, James Noble Page 5



Packed Data UNTITLED by Weir, Noble

multiples of four. Aligning fields wastes the memory space between the end of one field and the
start of the next.

TITTTTTTT T |

This is dead space and can't be used

The figure below shows how packing an object can ailmost halve the amount of memory that it
requires. The normal representation on the left allocates four bytes for each Boolean variable
(presumably to use faster CPU instructions) and aligns two and four-byte variables to two or
four-byte boundaries; the packed representation allocates only one byte for each Boolean
variable and dispenses with alignment for longer variables.

S z |8 5| B 8 & 2573
m = O ) m m — Oy o
HENEEN L[] L[]
Normal representation Packed representation

Considering the Insanity-Phone again, the designers realised that local phone books never cover
more than 32 area codes — so each entry requires only 5 bits to store the area code. A seven-
digit decimal number requires 24 bits. Surnames are duplicated many times, so I nsanity-Phone
stores each surname just once — an example of SHARING — and therefore gets less than 30,000
unigque names in each book; this requires 18 bits. Storing up to threeinitials (5 bits each — see
STRING COMPRESSION) costs a further 15 bits. Thetotal is 62 bits, and this can be stored in one
64 bit long integer for each entry.

Consequences

Each instance occupies less memory reducing the total memory requirements of the system,
even though the same amount of data can be stored, updated, and accessed randomly.
Choosing to pack one data structureis usually a local decision, with little global effects on the
program as awhole.

However: Thetime performance of a system suffers, because CPUs are slower at accessing
unaligned data. 1f accessing unaligned data requires many more instructions than aligned data,
it can impact the progrant' s power consumption. More complicated packing schemes like bit
packing can have even higher overheads.

Packing data requires programmer effort to implement, produces less intuitive code which is
harder to maintain, especially if you use hon-standard data representations. More complicated
techniques can increase testing costs.

Packing schemes that rely on particular aspects of a machine' s architecture, such as word sizes
or pointer formats, will reduce portability. If you' re using non-standard internal
representations, it is harder to exchange objects with other programs that expect standard
representations.

Finally, packing can reduce scalability, because it can be difficult to unpack data structures
throughout a system if more memory becomes available.

@, @, @,
0’0 0’0 0’0

© 1999 Charles Weir, James Noble Page 6



Packed Data UNTITLED by Weir, Noble

Implementation

The default implementation of a basic typeis usually chosen for time performance rather than
speed. For example, Boolean variables are often allocated as much space as integer variables,
even though they need only a single bit for their representation. Y ou can pack data by choosing
smaller data types for variables; for example, you can represent Booleans using single byte
integers or bit flags, and you may be able to replace full-size integers (32 or 64 bits) with 16 or
even 8-hit integers (C++s short and char types).

Compilerstend to align data members on machine-word boundaries which wastes space (see
thefigure on p.N above). Rearranging the order of the fields can minimise this padding, and
can reduce the overhead when accessing non-aligned fields. A simple approach isto allocate
fields within words in decreasing order of size.

Because packing has significant overheads in speed and maintainability, it is not worthwhile
unlessit will materially reduce the program’s memory requirements. So, pack only the data
structures that consume significant amounts of memory, rather than packing every class
indiscriminately.

Here are some other issues to consider when applying the PAckeD DATA pattern.
1. Compiler and L anguage Support
Compilers, assemblers and some programming language definitions support packing directly.

Many compilers provide a compilation flag or directive that ensures all data structures use the
tightest alignment for each item, to avoid wasted memory at the cost of slower run-time
performance. Microsoft C++, the directive:

#pragma pack( n )

sets the packing alignment to be based on n-byte boundaries, so pack(1) gives the tightest
packing; the default packing 8 [Microsoft 1997]. G++ provides a pack attribute for individual
fields to ensure they are allocated directly after the preceding fied [Stallman 1999].

2. Packing Objectsinto Basic Types

Objects can impose a large memory overhead, especially when they contain only a small
amount of data. Java objects impose an allocation overhead of at least one an additional
pointer, and C++ aobjects with virtual functions require a pointer to a virtual function table.
Y ou can save memory by replacing objects by more primitive types (such as integers or
pointers), an example of MULTIPLE REPRESENTATIONS.

When you need to process the data, wrap each primitive type in afirst-class object, and usethe
object to process the data; when you’ ve completed processing, discard the object, recover the
basic type, and store it once again. To avoid allocating lots of wrapper objects, you can reuse
the same wrapper for each primitive dataitem. The following Java code sketches how a
Bi gbj ect can be repeatedly initialised from an array of integers for processing. The becone
method reinitialises a Bi goj ect fromits argument, and the pr ocess method does the work.

Bi gObj ect obj = new Bi glbj ect(0);

for (int i=1; i<10; i++)

obj . becone(bigarray[i]);
obj . process();

In C++, we can define operators to convert between objects and basic types, so that the two
can be used interchangeably:

© 1999 Charles Weir, James Noble Page 7



Packed Data UNTITLED by Weir, Noble

cl ass Bi gl nt eger Obj ect

{
public:
Bi gl ntegerObject( int anlnt=0) : i( anlnt ) {}
operator int() { returni; }
private:
int i;
H
int main()
Bi gl ntegerObject i( 2), j( 3);
Bi gl ntegerObject k = i*j; // Uses conversion operators

3. Packing Pointers using Tables

Packing pointers is more difficult, because they don’t obviously contain redundant data. To
pack pointers you need to look at what they reference.

If a given pointer may point to only one of a given set of then it may be possible to replace the
pointer with an index into an array; often, an array of pointers to the original item. Since the

size of the array is usually much less than the size of all the memory in the system, the number
of bits needed for an array index can be much less than the number of bits needed for a general

pointer.
\)se‘?,/7 0 > ltem
index: 1
[0..arraySize] 5 \
y \Item
4
5 Item
etc.
Item

Take, for example, the Insanity-phone application above. Each entry apparently needs a
pointer to the corresponding surname string: 32 bits, say. But if we implement an additional
array of pointersinto the string table, then each entry need only store an index into this array
(16 bits). The additional index costs memory: 120K b using 4-byte pointers.

If you know that each item is guaranteed to be within a specific area of memory, then you can
just store offsets within this memory. This might happen if you’' ve built a string table, or if
you're using POOLED ALLOCATION, Of VARIABLE ALLOCATION Within a heap of known size. For
example, if all the Insanity-Phone surname strings are stored in a contiguous table (requiring
less than 200K with StrRING ComPRESSION), the packed pointer needs only hold the offset from
the start of thetable: 18 bits rather than 32.

4. Packing Pointers using Bitwise Operations

If you are prepared to sacrifice portability, and have an environment like C++ that allows you
to manipulate pointers as integers, then you have several possible ways to pack pointers. In
some architectures, pointers contain redundant bits that you do not need to store. Long pointers
in the 8086 architecture had at least 8 redundant bits, for example, so could be stored in three
bytes rather than four.

You can further reduce the size of a pointer if you can use knowledge about the heap allocation
mechanism, especially about alignment. Most memory managers allocate memory blocks
aligned on word boundaries; if thisis an 8-byte boundary, for example, then you can know that
any pointer to a heap object will be a multiple of eight. In this case, the lowest three bits of

© 1999 Charles Weir, James Noble Page 8



Packed Data UNTITLED by Weir, Noble

each pointer are redundant, and can be reused or not stored. Many garbage collectors, for
example, pack tag information into the low bits of their pointers [Jones and Lins 1996].

Example
Consider thefollowing simple C++ class:

cl ass MessageHeader {
bool inUse;
i nt nmessagelengt h;
char priority;
unsi gned short channel Nunber;
bool waitingToSend;

H
With 8-byte alignment, this occupies 16 bytes, using Microsoft C++ on Windows NT. With the
compiler packing option turned on it occupies just 9 bytes. Note that the packed structure does

not align theinteger i 1 to a four-byte boundary, so on some processors it will take longer to
load and store.

Even without compiler packing, we can still improve the memory use just by reordering the
data items within the structure to minimise the gaps. If we sort thefields in decreasing order of
size

cl ass ReorderedMessageHeader {
i nt messagelengt h;
unsi gned short channel Nunber;
char priority;
bool inUse;
bool waitingToSend;

H
the class occupies just 12 bytes, a saving of four bytes. If you're using compiler field packing,
both MessageHeader and Reor der edMessageHeader occupy 9 bytes, but there' s still a
benefit to latter sinceit puts all the member items on the correct machine boundaries where

they can be manipulated fast.
We can optimise the structure even more using bitfields. The following version contains the
same data as before:
class Bitfiel dVessageHeader {
i nt messagelengt h;
unsi gned channel Nunber: 16;
unsi gned priority: 8;
unsi gned i nUse: 1;

unsi gned wai ti ngToSend: 1;

public:
bool IslnUse() { return inUse; }
voi d SetlnUseFl ag( bool islnUse ) { inUse = islnUse; }
char Priority() { return priority; }
void SetPriority( char newPriority ) { priority = newPriority; }
/1 etc.

H
but occupies just 8 bytes, afurther saving of four bytes — or one byteif you're using compiler
packing.

Unfortunately compiler support for booleans in bitfields tends to be inefficient. This problem
isn't actually a sad reflection on the quality of C++ compiler writers today; the real reasonis
that it requires a surprising amount of code to implement the semantics of, say, theset B1
function above. We can improve performance significantly by using bitwise operations instead
of bitfieds, and implement the member functions directly to expose these operations:

© 1999 Charles Weir, James Noble Page 9



Packed Data UNTITLED by Weir, Noble

cl ass Bitw seMessageHeader {
i nt messagelengt h;
unsi gned short channel Nunber;
char priority;
unsi gned char fl ags;

public:
enum Fl agNane { I nUse = 0x01, WitingToSend = 0x02 };
bool GetFl ag( FlagNane f ) { return (flags & f) I=0; }
void Set Fl ag( Fl agNarme f ) { flags |=f; }
voi d ResetFlag( FlagName f ) { flags & ~f; }

H

This optimises performance, at the cost of exposing some of the implementation.

@ @ @
0’0 0’0 0’0

Known Uses

Packed data is ubiquitous in memory-limited systems. For example virtually all Booleansin
the EPOC system are stored as hit flags packed into integers. The Pascal language standard
includes a special PACKED data type qualifier, used to implement the original Pascal compiler.

To support dynamic binding, a C++ abject normally requires a vtbl pointer to support virtual
functions [Stroustrup 1995, Stroupstrup 1997]. EPOC requires dynamic binding to support
Multiple Representations for its string classes, but a vtbl pointer would impose a four bytes
overhead on every string. The EPOC string base class (TDesC) uses the top 4 bits of its ‘string
length’ data member to identify the class of each object:

class TDesC8 { private:
unsi gned int ilLength:28;
unsigned int iType: 4;
/* etc... */

Dynamically bound functions that depend on the actual string type are called from TDesC using
a switch statements on the value of thei Type hitfidd.

Bit array classes are available in both the C++ Standard Template Library and the Java
Standard Library. Both implement arrays of bits using array of machine words. Good
implementations of the C++ STL also provide a template specialisation to optimise the special
case of an array of Booleans by using a bitset [Stroustrup 1997, Chan et al 1998].

Java supports object wrapper versions for many primitive types (Integer, Float). Programmers
typically use the basic types for storage and the object versions for complicated operations.
Unfortunately Java collections store objects, not basic types, so every basic type must be
wrapped beforeit is stored into a collection [Gosling, Joy, Stede 1996]. To avoid storing
multiple copies of the same information the Palm Spotless VM carefully shares whatever
objects it can, such as constant strings defined in different class files [Taivalsaari et a 1999].

See Also

EmBEDDED POINTERS provides away to limit the space overhead of collections and similar data
structures. FIXep ALLOCATION and PooLED ALLOCATION provide ways to reduce any additional
memory management overhead.

Packing string data often requires STRING COMPRESSION.

The VisiTor and PReseNTER [VIissides 1996] patterns can provide behaviour for collections of
primitive types (bit arrays etc.) without having to make each basic data item into an object.
The FLYWEIGHT PATTERN [Gamma et a 1995] allows you to process each item of a collection of
packed data within the context of its neighbours.

© 1999 Charles Weir, James Noble Page 10



Sharing UNTITLED by Weir, Noble

Sharing

Also Known As. Normalisation.

How can you avoid multiple copies of the same information?
The same information is repeated multiple times.
Very similar objects are used in different components.
The same functions can be included in multiple libraries
The same literal strings are repeated throughout a program.
Every copy of the same information uses memory.

Sometimes the same information occurs many times throughout a program, increasing the
program’s memory requirements. For example, the Strap-1t-On user interface design includes
many icons showing the company’ s bespectacled founder. Every component displaying the
icon needs to haveit available, but every copy of that particular gargoyle wastes memory.

Duplication can also enter the program from outside. Data loaded from REsouRCE FILES or
from an external database must be recreated inside a program, so loading the same resource or
data twice (possibly in different parts of the program) will also result in two copies of the same
information.

Copying objects has several benefits. Architecturally, it is important that components take
responsibility for the abjects they use, so copying objects between components can simplify
ownership rdationships. Some language constructs (such as C++ value semantics and
Smalltalk cloning) assume object copying; and sometimes copying objects to where they are
required can avoid indirection, making systems run faster.

Unwanted duplication doesn't just affect data objects. Unless careis taken, every timea
separately compiled or built component of the program uses alibrary routine, a copy of that
routine will be incorporated into the program. Similarly every time a component uses a string
or a constant a copy of that string may be made and stored somewhere.

Unfortunatdy, for whatever reason information is duplicated, every copy takes up memory that
could otherwise be put to better use.

Therefore: Sore the information once, and share it everywhereit is needed.

Analyse your program to determine which information is duplicated, and which information
can be safely shared. Any kind of information can be duplicated — images, sounds, multimedia
resources, fonts, character tables, objects, and functions, as well as application data.

Once you have found common information, check that it can be shared. In particular, ensure
that it never needs to be changed, or that all its clients can cope whenever it is changed.
Modify theinformation’s clients so that they all refer to a single shared copy of the
information, typically by accessing the information through a pointer rather than directly.

If the shared information can be discarded by its clients, you may need to use REFERENCE
COUNTING Or GARBAGE COLLECTION SO that it is only released onceit is no longer needed
anywherein the program. If individual clients may want to change the data, you may need to
use CopPY-ON-WRITE.

For example, the Strap-1t-On PC really only needs one copy of Our Founder’s bitmap. This
bitmap is never modified, so a singlein-memory copy of the bitmap is shared everywhereit is
needed in the system.

© 1999 Charles Weir, James Noble Page 11



Sharing

UNTITLED by Weir, Noble

Consequences

Judicious sharing can reduce a program’s memory requirements, because only one copy is
required of a shared object. SHARING also increases the quality of the design, sincethere' sless
chance of code duplication. SHARING generally does not affect a program’s scalability when
more memory is made available to the system, nor its portability. Sincethere’'s no need to
allocate space for extra duplicate copies, SHARING can reduce start-up times, and to a lesser
extent run-time performance.

However: programmer effort and discipline, and team co-ordination is required to design programs to

take advantage of sharing. Designing sharing also increases the complexity of the resulting
system, adding to maintenance and testing costs since shared objects create interactions
between otherwise independent components.

Although it does not affect the scalability of centralised systems, sharing can reduce the
scalability of distributed systems, since it can be more efficient to make one copy of each
shared object for each processor.

Sharing can introduce many kinds of aliasing problems, especially when read-only data is
changed accidentally [Hogg 1991, Noble et al 1998], and so can increase testing costs. In
general, sharing impaoses a global cost on programs to achieve local goals, as many
components may have to be modified to share a duplicated data structure.

@, @, @,
0’0 0’0 0’0

Implementation

Sharing effectively changes one-to-one (or one-to-many) relationships into many-to-one (or
many-to-many) relationships. Consider the example below, part of a simple word processor, in
UML notation [Fowler 1997]. A Docunent is made up of many Par agr aphs, and each

Par agr aph has aPar agr aphFor nat .

Document

*

Paragraph
Paragraph %—1 Format

Considering each classin turn, it is unlikely that Docunment s or Par agr aphs will be duplicated,
unless, for example, many documents have many identical paragraphs. Y et many paragraphs
within a document will have the same format. This design, however, gives each Par agr aph
object has its own Par agr aphFor mat object. This means that the program will contain many
Par agr aphFor mat objects (one for each Par agr aph) whilst many of these objects will have
exactly the same contents. Par agr aphFor mat s are obvious candidates for sharing between
different Par agr aphs.

We can show this sharing as a one-to-many relationship.

© 1999 Charles Weir, James Noble Page 12



Sharing

UNTITLED by Weir, Noble

Document
1
*
Paragraph T/l Pir;gnrgt)h

In therevised design, there will only be afew Par agr aphFor mat objects, each one different,
and many Par agr aphs will sharethe same Par agr aphFor mat object.

The design activity of detecting repeated data and splitting it into a separate object is called
normalisation. Normalisation is an essential part of relational database design theory, and
boasts an extensive literature [Connolly and Begg 1999; Date 1999; Elmasri and Navathe
2000].

Y ou should consider the following other issues when applying the SHARING pattern.
1. Making Objects Shareable

Aliasing problems make it difficult to share objects in object-oriented programs [Hogg 1991,
Noble, Vitek, Potter 1998]. Aliasing problems are the side effects caused by changing a shared
object: if a shared abject is changed by one of its clients the change will affect any other client
of the shared object, and such changes can cause errorsin clients that do not expect them. For
example, changing the font in a shared Paragraph Format object will change the fonts for all
Paragraphs that share that format. If the new font is, say, a printer-only font, and is changed to
suit one particular paragraph that will never be displayed on screen, it will break other
paragraphs using that format which do need to be displayed on screen, because a printer-only
font will not work for them.

The only kinds of objects that can be shared safely without side effects are immutable objects,
objects that can never be changed. Theimmutability applies to the object itsdf — it’s not
enough just to make some clients read-only, since other, writing, clients may still change the
shared object ‘behind their back’. To share objects safely you typically have to change clients
so that they make new objects rather than changing existing ones (see Copy-ON-WRITE). You
should consider removing any public methods or fields that can be used to change shared
objects' state: in general, every fied should only beinitialised in the object’ s constructor (in
Java, all fields should befi nal ). The FLyweiGHT pattern [Gamma 1995] can be used to move
dynamic state out of shared objects and into their clients.

2. Establishing Sharing

For two or more components to be able to share some information, each component must be
ableto find the information that is shared.

In small systems, where only a few distinguished abjects are being shared, you can often use a
global variable to store each shared object, or store shared instances within the objects’ classes
using the SINGLETON pattern [Gamma 1995]. The shared global variables can beinitialised
statically when the program starts, or thefirst time a shared objects is accessed using LAazy
INITIALISATION [Beck 1997].

To provide a more general mechanism you can implement a shared cache, an in-memory
database mapping from keys to shared objects. To find a shared object, a component checks
the cache. If the shared object is already in the cache you useit directly; if not you create the

© 1999 Charles Weir, James Noble Page 13



Sharing

UNTITLED by Weir, Noble

object and store it back into the cache. For this to work you need a unique key for each shared
object to identify it in the cache. A shared cache works particularly well when several
components are loading the same objects from resource files databases, or networks like the
world wideweb. Typical keys could be the fully qualified file names, web page URLS, or a
combination of database table and database key within that table — the same keys that identify
the data being loaded in thefirst place.

3. Deleting Shared Objects

Once you' ve created shared objects, you may need to be able to delete them when no longer
required.

There are three standard approaches to deleting shared objects: REFERENCE COUNTING, GARBAGE
CoLLECTION and object ownership. RereRENCE COUNTING keeps a count of the number of
objects interested in a shared object; when this becomes zero the object can be released (by
removing the reference from the cache and, in C++, ddleting the object). A GARBAGE
CoLLECTOR can detect and remove shared objects without requiring reference counts. Note that
if a shared object is accessed via a cache, the cache will always have a reference to the shared
object, preventing the garbage collector from deleting it, unless you can use some form of weak
reference [Jones and Lins 1996].

With object ownership, you can identify one other single object or component that has the
responsibility of managing the shared object (see the SMALL ARCHITECTURE pattern). The
object’s owner accepts the responsibility of deleting the shared object at the appropriate time;
generally it needs to be an object with an overview of all the objects that ‘use the shared object
[Weir 1996, Cargill 1996].

4. Sharing Literalsand Strings

In many programs literals occupy more space than variables, so you can assign often used
literals to variables and then replace the literals by the variables, effectively SHARING one literal
in many places. For example, LaTeX uses this technique, coding common literals such as one,
two, and minus one as the macros ‘\ @e’, ‘\ t w@, and ‘\ m@n’ . Smalltalk shares literals as
part of the language environment, by representing strings as ‘symbols'. A symbol represents a
single unique string, but can be stored internally as if it were an integer. The Smalltalk system
maintains a ‘ symbol table that maps all known symbols to the strings they represent, and the
compilation and runtime system must search this table to encode each string as a symbal,
potentially adding a new entry if the string has not been presented before. The Smalltalk
environment uses symbols for all method names, which both compresses code and increases the
speed of method lookup.

5. Sharing across components and processes

It's more difficult to implement sharing between several componentsin different address
spaces. Most operating systems provide some kind of shared memory, but this is often difficult
to use. In concurrent systems, you heed to prevent one thread from modifying shared data while
another thread is accessing it. Typically this requires at least one semaphore, and increases
code complexity and testing cost.

Alternatively, especially when data is shared between many components, you can consider
encapsulating the shared data in a component of its own and use client-server techniques to
accessit. For example, EPOC accesses its relational databases through a single * database
server’ process. This server kegps a cache of indexes for its open databases; if two
applications use the same database they share the sameindex.

© 1999 Charles Weir, James Noble Page 14



Sharing UNTITLED by Weir, Noble

Example

This Java example outlines part of the simple word processor described above. Documents
contain Par agr aphs, each of which has a Par agr aphFor mat. Par agr aphFor mat s are
complex abjects, so to save memory several Par agr aphs share a single Par agr aphFor nat .
The code shows two mechanisms to ensure this:

When we duplicate a Par agr aph, both the original and the new Par agr aph sharea
single Par agr aphFor mat instance.

Par agr aphFor mat s are referenced by name, like “bold”, “ normal” or “heading 2”. A
Singleton Par agr aphFor mat Cat al og contains a map of all the namesto

Par agr aphFor mat objects, so when werequest a Par agr aphFor mat by name, the
result is the single, shared, instance with that name.

The most important class in the word processor is Document: basically a sequence of
Paragraphs, each of which as a (shared) Par agr aphFor nat .

class Docunent {
Vect or paragraphs = new Vector();
int currentParagraph = -1;
ThePar agr aph classusesa st ri ngBuf f er to store thetext of the paragraph, and also stores
areferenceto a Par agr aphFor mat object.

cl ass Paragraph inplenents Cloneable {

Par agr aphFor mat fornat;

StringBuffer text = new StringBuffer();
A new Par agr aph can be constructed either by giving areference to aformat object (whichiis
then stored, without being copied, as the new Paragraph’s format) or by giving a format hame,
which is then looked up in the Par agr aphFor mat Cat al og. Note that neither initialising or
accessing a paragraph’s format copies the Par agr aphFor mat object, rather it is passed by
reference.

Par agr aph( Par agr aphFormat format) {
this.format = format;
}

Par agraph(String formatNanme) {
t hi s( Par agr aphFor mat Cat al og. cat al og() . fi ndFor mat (f or mat Nanme) ) ;
}

Par agraphFormat format() {return format;}

Par agr aphs are copied using the clone method (used by the word-processor to implement its
cut-and-paste feature). The clone method only copies one object, so the new clone s fidds
automatically point to exactly the same objects as the old object’ s fidlds. We don’'t want a
Par agr aph and its cloneto sharethe st ri ngBuf f er, SO we must clone that explicitly and
install the cloned st ri ngBuf f er into the cloned Par agr aph; however we don’t want to clone
the Par agr aphFor mat reference, because Par agr aphFor mat s can be shared.

public Object clone() {

try {
Par agraph nyC one = (Paragraph) super.clone();
myCl one.text = new StringBuffer(text.toString());

return myCl one;

} catch (C oneNot SupportedException ex) {
return null;

}

}

Paragraphs find their formats using the Par agr aphFor mat Cat al og, The catalog isa
SINGLETON [Gamma et al 1995].

© 1999 Charles Weir, James Noble Page 15



Sharing UNTITLED by Weir, Noble

cl ass Par agraphFor mat Cat al og {
private static ParagraphFormat Cat al og systenW deCat al og
= new Par agr aphFor mat Cat al og() ;
public static ParagraphFormat Catal og catal og() {
return systenW deCat al og;
}

that implements a map from format names to shared Par agr aphFor mat objects:

Hasht abl e theCatal og = new Hasht abl e();
public void addNewNamedFor mat (String nane, ParagraphFormat format) {
t heCat al og. put (nane, f or mat) ;
}

publ i ¢ ParagraphFormat findFormat(String nane) {
return (ParagraphFormat) theCatal og. get(nane);
}

}

Since the Par agr aphFor mat objects are shared, we want to restrict what the clients can do
with them. So Par agr aphFor mat itsdlf isjust an interface that does not permit clientsto
change the underlying object.

interface ParagraphFormat {
Par agr aphFor mat next Par agr aphFor mat () ;
String defaultFont();
int fontSize();
int spacing();

}
The class Par agr aphFor mat | npl enent at i on actually implements the Par agr aphFor mat
objects, and includes a variety of accessor methods and constructors for these variables:

cl ass ParagraphFor mat | npl enent ati on i npl enents ParagraphFormat {
String default Font;
int fontSize;
i nt spacing;
String next ParagraphFor mat ;
Each Par agr aphFor mat object stores the name of the Par agr aphFor mat to be used for the
next paragraph. This makes it easier to initialise the Par agr aphFor mat objects, and will give

the correct behaviour if we replace a specific Par agr aphFor mat in the catalogue with another.
To find the corresponding Par agr aphFor mat object, it must also refer to the catalogue

publ i ¢ ParagraphFor mat next ParagraphFormat () {
return ParagraphFor mat Cat al og. cat al og() .
fi ndFor mat ( next Par agr aphFor mat ) ;

}
When the Docunent class creates a new paragraph, it use the shared Par agr aphFor mat
returned by the format of the current paragraph: Notethat Par agr aphFor mat objects are
never copied, so the will be shared between all paragraphs that have the same format.

public Paragraph newParagraph() {
Par agr aphFor mat next Par agr aphFor mat =
current Paragraph().format (). next ParagraphFormat ();
Par agr aph newPar agr aph = new Par agr aph( next Par agr aphFor nat) ;
i nsert Par agr aph( newPar agr aph) ;
return newPar agr aph;

Known Uses
Java's String instances are immutable, so implementations share a single underlying buffer
between any number of copies of the same String object [Gosling et al 1996]. And all
implementations of Smalltalk use tokens for pre-compiled strings, as discussed above.

© 1999 Charles Weir, James Noble Page 16



Sharing

UNTITLED by Weir, Noble

C++'stemplate feature often generate many copies of very similar code, leading to ‘ code
bloat’. Some C++ linkers detect and share such instances of duplicated object code —
Microsoft, for example, call this' COMDAT folding' [Microsoft 1997]. Most modern
operating systems provide Dynamic Link Libraries (DLLS) or Shared libraries that allow
different processes to use the same code without needing to duplicate it in every executable
[Kenah and Bate 1984; Card et al1998].

The EPOC Font and Bitmap server stores font and image data loaded from RESOURCE FILES N
shared memory [Symbian 1999]. These are used both by applications and by the Window
Server that handles screen output for all applications. Each client requests and releases the
font and bitmap data using remote procedure calls to the server process; the server loads the
data into shared memory or locates an already-loaded item, and thereafter the application can
access it directly (read-only). The server uses reference counting to decide when to delete each
item; an application will normally release each item explicitly but the EPOC operating system
will also natify the server if the application terminates abnormally, preventing memory leaks.

See Also

SHARING Was first described as a pattern in the Design Patterns Smalltalk Companion [Alpert,
Brown, Woolf 1998].

Copry-ON-WRITE provides a mechanism to change a shared object as seen by one object, without
impacting any other objects that rely onit. The ReEap-ONLY MEMORY pattern describes how you
can ensure that objects supposed to be read-only cannot be modified. Shared things are often
ReAD-ONLY, and so often end up stored on SECONDARY STORAGE.

The FLYWEIGHT PATTERN [Gamma et a 1995] describes how to make objects read-only so that
they can be shared safely. Objects may also need to be moved into a SINGLE PLACE for
modelling reasons [Noble 1997]. Ken Auer and Kent Beck [1996] describe techniques to avoid
sharing Smalltalk objects by accident.

© 1999 Charles Weir, James Noble Page 17



Copy-on-Write UNTITLED by Weir, Noble

Copy-on-Write
How can you change a shared object without affecting its other clients?

Y ou need the system to behave as if each client has its own mutable copy of some
shared data.

To save memory you want to share data, or
Y ou need to modify data in Read-Only Memory.

Often you want the system to behave as though there are lots of copies of a piece of shared
data, each individually modifiable, even though thereis only one shared instance of the data.
For example, in the Word-O-Matic word processor, each paragraph has its own format, which
users can change independently of any other paragraph. Giving every paragraph its own

Par agr aphFor mat object ensures this flexibility, but duplicates data unnecessarily because
there are only a few different paragraph formats used in most documents.

We can use the SHARING pattern instead, so that each paragraph format object describes several
paragraphs. Unfortunately, a change to one shared paragraph format will change al the other
paragraphs that share that format, not just the single paragraph the user is trying to change.

Theré sasimilar problem if you' re using READ-ONLY MEMORY (ROM). Many operating systems
load program code and read-only data into memory marked as ‘read-only’, allowing it to be
shared between processes; In palmtops and embedded systems the code may be loaded into
ROM or flash RAM. Clients may want changeable copies of such data; but making an
automatic copy by default for every client will waste memory.

Therefore: Share the abject until you need to changeit, then copy it and use the copy in future.

Maintain aflag or reference count in each sharable object, and ensureit’s set as soon as there's
more than one client to the object. When a client calls any method that modifies a shared
object’s externally visible state, create a duplicate of some or all of the object’s statein a new
object, delegate the operation to that new object, and ensure that the the client uses the new
object from then on. The new object will initially not be shared (with flag unset or reference
count of one), so further modifications won’t cause a copy until the new object in turn then gets
multiple clients.

Y ou can implement Copy-oN-wRITE for specific objects in the system, or implement it as part of
the operating system infrastructure using PAGING techniques. Thelatter approach is
particularly used with code, which is normally read-only but allows a program to modify its
own code on occasion, in which case a paging system can make a copy of part of the code for
that specific program instance.

Thus Word-O-Matic keeps a reference count of the number of clients sharing each

Par agr aphFor mat object. In normal use many Document objects will share the same

Par agr aphFor mat, but on the few occasions that a user modifies the format of a paragraph,
Word-O-Matic makes a copy of its Par agr aphFor mat and keeps that separate to the modified
Par agr aph and to any other Par agr aphs with the new format.

Consequences

CoPY-ON-WRITE gives programmers the illusion of many copies of a piece of data, without the
waste of memory that would imply. So it reduces the memory requirements of the system. In
Some cases it increases a program’ s execution speed, and particularly its start-up time, since
copying can be a slow operation.

© 1999 Charles Weir, James Noble Page 18



Copy-on-Write UNTITLED by Weir, Noble

Cory-oN-WRITE also allows you to make it appear that data stored in read-only storage can be
changed. So you can move infrequently changed data into read-only storage, reducing the
program’s memory requirements.

Once Cory-oN-WRITE has been implemented it requires little programmer disciplineto use,
since clients don’t need to be directly aware of it.

However: Copy-oN-WRITE requires programmer effort or hardware or operating system support to
implement, because the system must intercept writes to the data, make the copy and then
continue the write as if nothing had happened.

If there are many write accesses to the data, then copy-oN-wRITE can decreasetime
performance, since each write access must ensure the data’ s not shared. Copy-oN-WRITE can
also lead to lots of copies of the same thing cluttering up the system, decreasing the
predictability of the system’s performance, making it harder to test, and ultimately increasing
the system’s memory requirements.

CoPY-ON-WRITE Can cause problems for object identity if the identity of the copy and the
original storageis supposed to be the same.

Implementation
Here are some issues to consider when implementing the Copy-ON-WRITE pattern.

1. Copy-On-Write Proxies

The most common approach to implementing Copy-ON-WRITE iS to use a variant of the Proxy
Pattern [Gamma et a 1995, Buschmann et a 1996, Coplien 1994]. Using the terminology of
Bushman et al [1996], a Proxy references an underlying Original object and forwards all the
messages it receives to that object.

To use Proxy to implement Copy-ON-WRITE, every client uses a different Proxy object, which
distinguishes accessors, methods that merely read data, from mutators that modify it. The
Original Object contains a flag that records whether it has more than one Proxy sharing it.

Any updator method checks this flag and if the flag is set, makes a (new, unshared) copy of the
representation, installs it in the proxy, and forwards the mutator to the that copy instead.

Original
Proxy original
. Uses 1. 1 shared: bool
Client mutate()
e oy
Original clone()

original.access()ﬁ if (original.shared)
original = original.clone()

original.mutate()

In this design, the shar ed flag is stored in the Original object, and it’s the responsibility of the
representation’s cl one method to create an object with the flag unset. A valid alternative
implementation is to place the flag into the Proxy object; in this case the Proxy must reset the
flag after creating and installing a new Original object. As athird option, you can combine the
Client and Proxy object, if the Client knows about the use of Copy-ON-WRITE, and if no other
objects need to use the Original (other than via the combined Client/Proxy, of course).

© 1999 Charles Weir, James Noble Page 19



Copy-on-Write UNTITLED by Weir, Noble

Y ou can also combine the function of copy-oN-wRITE with managing the lifetime of the underlying
representation object by replacing the shar ed flag in the Representation object with a reference count.
A reference count of exactly oneimplies the object is not shared and can be modified. Seethe
RerFERENCE COUNTING pattern for a discussion of reference counting in detail.

2. Copying Changesto Objects

Y ou do not have to copy all of any object when it is changed. Instead you can create a ‘ ddta
object that stores only the changes to the object, and delegates requests for unchanged data
back to the main object. For example, when a user changes the font in a paragraph format, you
can create a Font Change delta object that returns the new font when it is asked, but forwards
all other requests to the underlying, and unchanged, Par agr aphFor mat object. A delta object
can beimplement as a DecoraTOR 0N the original object [Gamma et al 1995]. The diagram
below uses UML shows a possible implementation as a UML Collaboration Diagram [Fowler

1997].
Before:
: Paragraph : Paragraph
1. Font Format Proxy | 1.1. Font Format
2. Spacing 2.1 Spacing
After:
: Paragraph : Font Change : Paragraph
1. Font Format Proxy | 1.1. Font Format
2. Spacing 2.1 Spacing 2.1.1 Spacing

3. Writing to Objectsin Read-Only Memory

Y ou can use Copy-ON-WRITE SO that shared representationsin ROM can be updated. Clearly
the shar ed flag must be set in the ROM instance and cleared in the copy, but otherwisethisis
no different from a RAM version of the pattern.

In C++ theruleis that only instances of classes without a constructor may be placed in ROM.
So atypical implementation must use static initialisation for the flag, and must therefore have
public data members. The restriction on constructors means that you can’t implement a copy
constructor and assignment operator; instead you’ Il need to write a function that uses the
default copy constructor to copy the data.

Example

This example extends the word processor implementation from the SHARING pattern, to allow
the user to change the format of an individual paragraph. In this examplethe Par agr aph
object combines the role of Proxy and Client, since we verestricted all access to the

Par agr aphFor mat object to via the Par agr aph object. We don’t need to separate out the read-
only aspects to a separate interface as no clients will ever see Par agr aphFor mat s directly.

TheDocunent class remains unchanged, being essentially alist of paragraphs. The

Par agr aphFor mat classis also straightforward, but now it supports mutator methods and
needs to implement thecl one method. For simplicity we only show one mutator — to set the
font.

© 1999 Charles Weir, James Noble Page 20



Copy-on-Write UNTITLED by Weir, Noble

cl ass ParagraphFormat i nplenents Cl oneable {
String default Font;
int fontSize;
int spacing;
String next ParagraphFor mat ;

public Qbject clone() throws Cl oneNot SupportedException {
return super.clone();
}

voi d privateSet Font(String aFont) {defaultFont = aFont;}
}
Asin the previous example, the Paragraph class must also implement cloning. This
implementation keeps the shared flag in the Par agr aph class (i.e. in the Proxy), as the member
par agr aphFor nat | sUni que.

cl ass Paragraph inplenents Cloneable {
Par agr aphFor mat fornat;
bool ean par agr aphFor mat | sUni que = fal se;

StringBuffer text = new StringBuffer();

Par agr aph( Par agr aphFormat format) {
this.format = format;
}

Par agraph(String formatNanme) {
t hi s( Par agr aphFor mat Cat al og. cat al og() . fi ndFor mat (f or mat Nane) ) ;
}

The Par agr aph implementation provides two private utility functions:

about ToShar ePar agr aphFor mat and about ToChangePar agr aphFor mat. The method

about ToShar ePar agr aphFor mat should be invoked whenever we believeit’s possible that we
may be referencing a Par agr aphFor mat object known to any other object.

protected voi d about ToShar ePar agraphFormat () {
par agr aphFor mat | sUni que = fal se;

If any external client obtains a referenceto our Par agr aphFor mat object, or passes in one
externally, then we must assume that it’s shared:

Par agraphFormat format() {
about ToShar ePar agr aphFor mat () ;
return format;

}

public void set Fornmat ( Par agr aphFor mat aPar agr aphFormat) {
about ToShar ePar agr aphFor mat () ;
format = aParagraphFornat;

}
And similarly, if a client clones this Par agr aph object, we don’t want to clone the format, but
instead simply note that we re sharing it:

public Object clone() {

try {
about ToShar ePar agr aphFor mat () ;
Par agraph nyCl one = (Paragraph) super.clone();
myCl one.text = new StringBuffer(text.toString());
return myCl one;

} catch (C oneNot SupportedException ex) ({
return null;

}

}

Meanwhile any method that modifies the Par agr aphFor mat object must first call
about ToChangePar agr aphFor mat. This method makes sure the Par agr aphFor mat object is
unique to this Paragraph, cloning it if necessary.

© 1999 Charles Weir, James Noble Page 21



Copy-on-Write UNTITLED by Weir, Noble

protected voi d about ToChangePar agr aphFor mat () {
if (!paragraphFornmat!sUni que) {
try {

format = (ParagraphFormat) format().clone();
} catch (C oneNot SupportedException e) {}
par agr aphFor mat | sUni que = true;

}
}
Here' s a simple example of a method that modifies a Par agr aphFor mat :

voi d setFont (String fontNane) {
about ToChangePar agr aphFor mat () ;
format. privat eSet Font (f ont Nane) ;

}

@, @, @,
0’0 0’0 0’0

Known Uses

Many operating systems use Copy-oN-WRITE in their paging systems. Executable codeis very
rardy modified, so it’s usually sHARED between all processes using it, but this pattern allows
moadification when processes need it. By default each page out of an executablefileis flagged
as read-only and shared between all processes that useit. |f a client writes to a shared page,
the hardware generates an exception, and operating system exception handler then creates a
writable copy for that process alone. [Kenah and Bate 1984; Goodheart and Cox 1994]

RogueWave' s Tools.h++ library uses Copy-oN-wRITE for its CSt ri ng class [RogueWave
1994]. A cstring object represents a dynamically allocated string. C++'s pass-by-value
semantics mean that the Cst r i ng objects are copied frequently, but very sddom modified. So
each Cst ri ng object is simply awrapper referring to a shared implementation. CString’s
copy constructor and related operators manipulate a reference count in the shared
implementation. If any client does an operation to change the content of the string; the

Cst ri ng object simply makes a copy and does the operation on the copy. Oneinteresting
detail is that thereis only oneinstance of the null string, which is always shared. All attempts
to create a null string, for example by initialising a zero length string, simply access that shared
object.

Because modifiable strings are relatively rare in programs, Sun Java implements them using a
separate class, St ri ngBuf f er. However Stri ngBuf f er permitsit's clientsto retrieve St ri ng
objects with themethod t oSt ri ng. To save memory and speed up performance the resulting
String usesthe underlying buffer already created by St ri ngBuf f er. However the
StringBuf f er object has aflag to indicate that the buffer is now shared; if a client attempts
to make further changes to the buffer, st ri ngBuf f er creates a copy and uses that. [Chan et al
1998]

Objects in NewtonScript were defined using inheritance, so that common features could be
declared in a parent object and then shared by all child objects that heeded them. Default values
for objects’ fidds were defined using copy-on-write slots. If a child object didn’t define afield
it would inherit that field’ s value from its parent object, but when a child object wroteto a
shared field alocal copy of the field was automatically created in the child object. [Smith
1999].

See Also
Hooks provide an alternative technique for changing the contents of read-only storage.

© 1999 Charles Weir, James Noble Page 22



Embedded Pointer UNTITLED by Weir, Noble

Embedded Pointer
How can you reduce the space used by a collection of objects?

Linked data structures are built out of pointers to objects

Collection objects (and their internal link objects) occupy large amounts of memory to
storelarge collections.

Traversing through a linked data structure can require temporary memory, especially if
thetraversal isrecursive.

Object-Oriented programs implement relationships between objects by using collection objects
that store pointersto other objects. Unfortunatdy, collection objects and the objects they use
internally can require alarge amount of memory. For example, the Strap-1t-On’s *Mind
Reader’ brainwave analysis program must receive brainwave data in real-time from an
interrupt routine, and storeit in alist for later analysis. Because brainwaves have to be
sampled many times every second, a large amount of data can accumulate before it can be
analysed, even though each brainwave sampleis rdatively small (just a couple of integers).
Simple collection implementations based on linked lists can impose an overhead of at least
three pointers for every object they store, so storing a sequence of two-word samplesin such a
list more than doubles the sequence' s intrinsic memory requirements — see figure xx below.

List Header
Last
First A Next | ™ Next ™ Next ’Hl.
ObjectPtr ObjectPtr ObjectPtr
Collected Object Collected Object Collected Object

Figure 2: Linked list using exter nal pointers

Aswdl as this memory overhead, linked data structures have other disadvantages. They can
use large numbers of small internal objects, increasing the possibility of fragmentation (see
Chapter N). Allocating all these objects takes an unpredictable amount of time, making it
unsuitable for real-timework. Traversing the structure requires following large numbers of
pointer links; this also takes time, but more importantly, traversals of recursive structures like
graphs and trees can also require an unbounded amount of temporary memory; in some cases,
similar amounts of memory to that required to store the structureitsdf. Finally, any function
that adds an object to such a collection may fail if thereis insufficient memory, and so must
carry all the costs of PARTIAL FAILURE.

Of course, linked structures have many compensating advantages. They can describe many
different kinds of structures, including linked lists, trees, queues, all of awide variety of
different subtypes [Knuth 1997]. These structures can support awide variety of operations
quite efficiently (especially insertions and deletions in the middle of the data). Linked structures

© 1999 Charles Weir, James Noble Page 23



Embedded Pointer UNTITLED by Weir, Noble

support VARIABLE ALLOCATION, SO they never need to allocate memory that is subsequently
unused. Theonly real alternative to building linked structures is to use some kind of Fixep
ALLOCATION, such as a fixed-size array. But fixed structures place arbitrary limits on the
number of objects in the callection, waste memory if they are not fully occupied, and insertion
and deletion operations can be very expensive. So, how can you keep the benefits of linked
data structures while minimising the disadvantages?

Therefore: Embed the pointers maintaining the collection into each object.

Design the collection data structure to storeits pointers within the objects that are contained in
the structure, rather than in internal link objects. Y ou will need to change the definitions of the
objects that are to be stored in the collection to include these pointers (and possibly to include
other collection-related information as well).

Y ou will also need to change the implementation of the collection object to use the pointers
stored directly in objects. For a collection that is used by only one external client object, you
can even dispense completely with the object that represents the collection, and incorporate its
data and operations directly into the client. To traverse the data structure, useiteration rather
than recursion to avoid allocating stack frames for every recursive call, and use extra (or reuse
existing) pointer fields in the objects to store any state related to the traversal.

So, for example, rather than store the Brainwave sample objects in a collection, Strap-it-On’'s
Brainwave Driver uses an embedded linked list. Each Brainwave sample object has an extra
pointer field, called Next , that is used to link brainwave samplesinto a linked list. As each
sampleisreceived, theinterrupt routine adjustsits Next  fidd to link it into thelist. The main
analysis routine adjusts the sample object’ s pointers to remove each from thelist inits own
time for processing.

List Header Collected Object

] Next Collected Object
e .

Next T Ta Collected Object

I Next -

Figure 3: Linked list using embedded pointers

Consequences

Embedded pointers remove the need for internal link objects in collections, reducing the number
of objects in the system and thus the system’s memory requirements, whileincreasing the
predictability of the systems memory use (especially if traversals areiterative rather than
recursive). Theroutines to add and remove items from the linked list cannot suffer memory
alocation failure.

Using embedded pointers reduces or removes the need for dynamic memory allocation,
improving the real-time performance of the system. Some operations may have better run-
time performance; for example with an embedded doubly-linked list you can remove an
element in the collection simply by using a pointer to that eement directly. With an
implementation using external pointers (such as STL's Deque [Austern 1998]) you' d need first
to set an iterator to refer to theright eement, which requires a linear search.

© 1999 Charles Weir, James Noble Page 24



Embedded Pointer UNTITLED by Weir, Noble

However: Embedded pointers don’t really belong to the objects they are embedded inside. This
pattern reduces those objects’ encapsulation, gaining a local benefit but reducing the
localisation of the design. The pattern tightly couples objects to the container class that holds
them, making it more difficult to reuse either class independently, increasing the programmer
effort required because specialised collections often have to be written from scratch, reducing
the design quality of the system and making the program harder to maintain.

In many cases a given collected object it will often need to be in several different collections at
different times during its lifetime. 1t requires programmer discipline to ensure that the same
pointer is never used by two collections simultaneously.

@ @ @
0’0 0’0 0’0

Implementation

Applying the Embedded Pointer pattern is straightforward: place pointer members into objects
and build up linked data structures using those pointers, instead of using external collection
objects. You can find the details in any decent textbook on data structures from Knuth [1997],
which will describe the details, advantages, and disadvantages of the classical linked data
structure designs, from simple singly and doubly linked lists to subtle complex balanced trees.
See the SMALL DATA STRUCTURES pattern for alist of such textbooks.

1. Reuse

Themain practical issue when using embedded pointers is how to incorporate the pointersinto
objects in away that provides some measure of reuse, to avoid re-implementing all the
collection operations for every singlelist. Thekey ideaisfor objects to somehow present a
consistent interface for accessing the embedded pointers to the collection class (or the functions
that implement the collection operations). In this way, the collection can be used with any
object that provides a compatible interface. There are three common techniques for
establishing interfaces to embedded pointers: inheritance, inline objects, and preprocessor
constructs.

1.1. Inheritance. You can put the pointers and accessing functionality into a superclass, and
make the objects to be stored in a collection inherit from this class. Thisis straightforward,
and provides a measure of reuse. However: you can’'t have more than one instance of such a
pointer for a given object; if the pointer is implementing a collection, this would limit. In
single-inheritance languages like Smalltalk it also prevents any other use of inheritance for the
same object, and so limits any abject to be in only one collection at a time. In languages with
multiple inheritance objects could be in multiple collections provided each collection accesses
the embedded pointers through a unique interface, supplied by a unique base class (C++) or
interface (Java).

EmbeddableObject

embeddedPointer

supportFunctions()

Client Object

© 1999 Charles Weir, James Noble Page 25



Embedded Pointer UNTITLED by Weir, Noble

1.2. Inline Objects. Inlanguages with inline objects, like C and C++, you can embedded a
separate ‘link’ object that contains the pointers directly into the client object. This doesn't
suffer from the disadvantages of using Inheritance, but you need to be able to find the client
object from a given link object and vice versa. In C++ this can be implemented using pointers
to members, or (more commonly) as an offset in bytes.

Client Object /l\

Offset

N%

Link Object

embedded Pointer

For example, EPOC'’s collection libraries find embedded pointers using byte offsets. Whenever
anew collectionis created, it must beinitialised with the offset inside its client objects where
its pointers are embedded.

1.3. Preprocessors. C++ provides two kinds of preprocessing: the standard preprocessor
cpp, and the C++ template mechanisms. So in C++ a good approach is to include the
embedded pointers as normal (possibly public) data members, and to reuse the management
code via preprocessing. You can also preprocess code in almost any other language given a
suitable preprocessor , which could be either a special purpose program like m, or a general
purpose program like per | .

2. Pointer Differences

Sometimes an object needs to store two or more pointers; for example a circular doubly-linked
list node needs pointers to the previous and next item in the list. Y ou can reduce the amount of
memory nheeded to store by storing the difference (or the bitwise exclusive or) of the two
pointers, rather than the pointer itself. When you are traversing the structure forwards, for
example, you take the address of the previous node and add the stored difference to find the
address of the next node; reverse traversals work similarly.

For example, in Figure XXX, rather than node ¢ storing the dotted forward and back pointers
(i.e. the addresses of nodes b and d) node ¢ stores only the difference between these two
addresses. Given a pointer to node b and the difference stored withinc, you can calculate the
address of noded as (b — (d-c)). Similarly, traversing thelist the other way, given the address
of node d and (b-c) you can calculate the address of node b as (d+(b-d)). For this to work, you
need to store two initial pointers, typically a head and tail pointer for a circular doubly-linked

list [Knuth 1997].
e al VR ‘A e AT 3
: A
A b ) S c ) SN d ...
(a-c) (b-d) (c-e)
(3) Traversals

A related, but different, problem happens when you need to traverse an arbitrarily deep
structure, especialy if the traversal has to be recursive. Suppose for example you have an
unbalanced binary tree, and you need to traverse through all the dementsin order. A traversal

© 1999 Charles Weir, James Noble Page 26



Embedded Pointer UNTITLED by Weir, Noble

beginning at E will recursively visit C, then F; thetraversal at C will visit B and D, and so on.
Every recursive call requires extra memory to store activation records on the stack, so
traversing larger structures can easily exhaust a process's stack space.

E

A

3.1. Iterativetraversals using extra embedded pointers. Consider the traversal more
closdly: at each object it needs to store one thing on the stack: the identity of the object its
coming from (and possibly any working data or parameters passed through the iteration). So
for example, when C invokes the operation on D, it must store that it needs to return to E on
completion. You can use Embedded Pointers in each object to store this data (the parent, and
the traversal state — two Boolean flags that remember whether the left and right leaves have
been processed). This allows you to iterate over the structure using aloop rather than
recursion, but imposes the overhead of an extra pointer or two in each object.

Collected Object current = TopElement
while (true) {
lef previousObject right if (we've processed left and not right)
currentlyProcessing doAction();
doAction() if (left exists && we've not processed it)
static iterate() — start processing left object;

else if (right exists && we've not processed it)
start processing right object
else (if previous exists)
return to processing previous object
else
return;

}

3.2. Iterativetraversals using pointer reversal. Consider the iteration process further. At
any time one of the three pointers in each eement, Ieft leaf, right leaf or parent, is redundant.

If thereis no iteration, the parent pointer is redundant; if aleft or right left is currently being
processed that leaf pointer is redundant (because the traversal has already reached that leaf).
Pointer reversal allows iterative traversals of linked structures by temporarily using pointers to
leaf nodes as parent pointers: as the traversal proceeds around the object, the pointers currently
being followed are ‘reversed’, that is, used to point to parent objects.

In the figure above, for example, when atraversal is at node A, node B’s | &ft leaf pointer would
be reversed to point to its parent, node C; because B is C’s l€ft child, C' s left child pointer
would also be reversed to point to node E.

© 1999 Charles Weir, James Noble Page 27



Embedded Pointer UNTITLED by Weir, Noble

Example

Here' s an example using Embedded Pointers to store a data structure and traverseit using
pointer reversal. The example program implements a sorting algorithm using a simple binary
tree. To start withwe |l give the objects that are stored in the tree (the Bi nar yTr eeObj ect s)
asingle character of local data. We also heed agr eat er Than Operation and a operation
called to do the action we need (dol t ).

class BinaryTreeObject {
char dat a;

Bi naryTreeObj ect (char data) {
this.data = data;
}

bj ect dolt(Object paranm {
return ((String) param + data);

bool ean greater Than(Bi naryTreeCbj ect other) {
return data > other.data;
}

A binary tree needs a left pointer and a right pointer corresponding to each node. Using the
Embedded Pointers pattern, we implement each within the structureitself:

Bi naryTreeCbj ect left;

Bi naryTreeObj ect right;
Adding an dement to the binary treeis fairly easy. We can traverse the tree starting at the top,
going left when our new element is less than the current item, greater when it’s greater, until we
get to avacant position in the tree.

static void insert(BinaryTreeCbject top, BinaryTreeObject newitem {
Bi naryTreeObj ect current = top;

for (53) {
if (current.greaterThan(newtem) ({

if (current.left == null) {
current.left = newltem
return,;
} else {
current = current.left;
} else {
if (current.right == null) {
current.right = newitem
return,;
} else {
current = current.right;
}
}

© 1999 Charles Weir, James Noble Page 28



Embedded Pointer UNTITLED by Weir, Noble

Note that this method is not recursive and so should allocate no memory other than one stack
frame with onelocal variable (cur rent).

Traversing the treeis more difficult, because the traversal has to visit all the dementsin the
tree, and this means backtracking up the tree when it reaches a bottom-level node. To traverse
the tree without using recursion, we can add two embedded pointers to every tree node: a
pointer to the previous (parent) item in the tree, and a marker noting which action, left node or
right node, the algorithm is currently processing.
Bi naryTreeObj ect previous;
static final int Inactive = 0, GoingLeft = 1, GoingRight = 2;
int action = Inactive;
Thet raver sal method, then, must move through each node in infix order. Each iteration
visits one node; however this may mean up to three visits to any given node (from parent going
left, from left going right, and from right back to parent); we use the stored action data for the
node to see which visit thisoneis. Thetraversal method must also call thedolt method at
the correct point — after processing the left node, if any.
static Object traversal (BinaryTreeQbject start, Object param {
Bi naryTreeObj ect current = start;

for () {

if (current.action == CoingLeft ||
(current.action == Inactive & current.left == null)) {
param = current.dolt(param;

}

if (current.action == Inactive & current.left != null) {
current.action = GoinglLeft;
current.left.previous = current;
current = current.left;

} else if (current.action != GoingRight & current.right !'= null) {

current.action = Goi ngRi ght;
current.right.previous = current;

current = current.right;

} else {

current.action = Inactive;

if (current.previous == null) {
br eak;

} .

current = current. previous;

}

}

return param
}
Of course, a practical implementation would improve this examplein two ways. First we can
put thel eft, ri ght, acti on, previ ous pointers and the gr eat er Than stub into a base class
(Sor t abl ebj ect, perhaps) or into a separate object. Second we can makethet r aver sal ()
method into a separate ITERATOR object [Gamma et a 1995], avoiding the need to hard-code the
dol t method.

We can extend this example further, to remove the parent pointer from the data structure using
Pointer Reversal. First, we'll need two additional methods, to save the parent pointer in either
theleft or theright pointer:

© 1999 Charles Weir, James Noble Page 29



Embedded Pointer UNTITLED by Weir, Noble

Bi naryTreeObj ect savePar ent Ret ur ni ngLeaf (Bi naryTreeObj ect parent) {
Bi naryTreeObj ect | eaf;

if (action == GoingLeft) {

leaf = left;

|l eft = parent;
} else {

| eaf = right;

right = parent;
}

return | eaf;

}
and then to restore it as required:

Bi naryTreeObj ect restorelLeaf ReturningParent (Bi naryTreeObj ect | eaf Just Done) {
Bi naryTreeObj ect parent;

if (action == GoingLeft) {

parent = left;

left = | eaf Just Done;
} else {

parent = right;

right = | eaf Just Done;

return parent;
}
Now we can rewritethet r aver sal method to remember the previous item processed, whether
it's the parent of the current item or aleaf node, and to reverse the left and right pointers using
the methods above:

static Object reversingTraversal (Bi naryTreeQoject top, Object param {

Bi naryTreeObj ect current = top;
Bi naryTreeObj ect | eafJust Done = null;
Bi naryTreeObj ect parentOfCurrent = null;

for () {

if (current.action == CoingLeft ||
(current.action == Inactive & current.left == null)) {
param = current.dolt(param;

}

if (current.action !
par ent O Curr ent

= I nactive)
= current.restorelLeaf Returni ngParent (| eaf Just Done) ;
if (current.action == Inactive & current.left != null) {
current.action = GoinglLeft;
Bi naryTreeObj ect p = current;
current = current.savePar ent Ret ur ni ngLeaf (parent Of Current);
parent Of Current = p;
} else if (current.action != GoingRight & current.right !'= null) {
current.action = Goi ngRi ght;
Bi naryTreeObj ect p = current;
current = current.saveParent Returni ngLeaf (parent Of Current);
parent Of Current = p;

} else {
current.action = I nactive;
if (parentOfCurrent == null) {
br eak;

| eaf Just Done = current;
current = parentOf Current;

}

return param

}

WEe're still wasting a word in each object for the ‘action’ parameter. In Java we could perhaps
reduce this to a byte but no further. Ina C++ implementation we could use the low bits of,

© 1999 Charles Weir, James Noble Page 30



Embedded Pointer UNTITLED by Weir, Noble

say, the left pointer to store it (See Packep DATA — packing pointers), thereby reducing the
overhead of the traversing algorithm to nothing at all.

@ @ @
0’0 0’0 0’0

Known Uses

EPOC provides at least three different ‘linked list’ collection classes using embedded pointers
[Symbian 1999]. The embedded pointers are instances of provided classes (TSgl QueLi nk, for
example) accessed via offsets; the main collection logic are in separate classes, which usethe
‘thin templateidiom’ to provide type safety: TSgl Queue<Myd ass>. EPOC applications, and
operating system components, use these classes extensively. The maost common reason for
preferring them over collections requiring heap memory is that operations using them cannot
fail; thisis a significant benefit in situations where failure handling is not provided.

The Smalltalk Li nkedLi st class uses inheritance to mix in the pointers; the only things you
can storeinto aLi nkedLi st are objects that inherit from class Link [Goldberg and Robson
1983]. ClassLi nk contains two fields and appropriate accessors (pr evi ous and next ) to
allow doublelinking. Compared with other Smalltalk collections, for each dement you save
oneword of memory by using concatenation instead of pointers, plus you save the memory
overhead of creating a new object (two words or so) and the overhead of doing the allocation.

See Also

Y ou may be able to use Fixep ALLocATION to embed objects directly into other objects, rather
than just embedding pointers to objects.

Pointer reversal was first described by Peter Deutsch [Knuth 1997] and Schorr and Waite
[1967]. Embedded Pointers and pointer reversal are used together in many implementations of
GARBAGE CoLLEcTION [Goldberg and Robson 1983, Jones and Lins 1996]. Jiri Soukup
discusses using preprocessors to implement linked data structures in much more detail [1994].

© 1999 Charles Weir, James Noble Page 31



Multiple Representations UNTITLED by Weir, Noble

Multiple Representations
How can you support several different implementations of an object?

There are several possible implementations of a class, with different trade-offs between
size and behaviour.

Different parts of your system, or different uses of the class, require different choices of
implementation. One size doesn't fit all.

There are enough instances of the class to justify extra code to reduce RAM usage.

Often when you design a class, you find there can be several suitable representations for its
internal data structures. For example, in the Strap-1t-On’s word-processor (Word-O-Matic) a
word may be represented as a series of characters, a bitmap, or a sequence of phonemes.
Depending on the current output mechanism (a file, the screen, or the vocaliser) each of these
representations might be appropriate.

Having to choose between several possible representations is quite common. Some
representations may have small memory requirements, but be costly in processing time or other
resources; others may be the opposite. 1n most cases you can examine the demands of the
system and decide on a best SvALL DATA STRUCTURE. But what do you do when there s no
single ‘best’ implementation?

Ther efore: Make each implementation satisfy a common interface.
Design a common abstract interface that suits all the implementations without depending on a
particular one, and ensure every implementation meets the interface. Access implementations

via an ABsTRACT CLAss [Woolf 2000] or use ADAPTERS t0 access existing representations
[Gamma et al 1995] so clients don't have to be aware of the underlying implementation.

Common Interface
Client Uses Foo()
Bar()
Implementatlon Implementation
B Different
_—"1 Implementations
Foo() Foo()
Bar() Bar()

For example, Word-O-Matic defines a single interface ‘Wor d’, which is used by much of the
word-processing code. Several concrete classes, St or abl eWor d, Vi ewabl eVr d,
SpokenWor d, that implement the wor d interface. Each implementation has different internal
data structures and different implementations of the operations that access those structures.
The software creates whichever concrete classis appropriate for the current use of the Word
object, but the distinction is only significant when it comes to outputting the object. The
multiple implementations are concealed from most of the client code.

© 1999 Charles Weir, James Noble Page 32



Multiple Representations UNTITLED by Weir, Noble

Consequences

The system will use the most appropriate implementation for any task, reducing the memory
requirements and processing time overheads that would be imposed by using an inappropriate
representation. Code using each instance will use the common interface and need not know the
implementation, reducing programmer effort on the client side and increasing design quality
and reusability.

Representations can be chosen locally for each data structure. More memory-intensive
representations can be used when more memory is available, adding to the scalability of the
system.

However: The pattern can also increase total memory requirements, since the code occupies additional
memory.

MULTIPLE REPRESENTATIONS iNCreases programmer effort in the implementation of the object
concerned, because multiple implementations are more complex than a single implementation,
although this kind of complexity is often seen as a sign of high-quality design because
subsequent changes to the representation will be easier. For the same reason, it increases
testing costs and maintenance costs overall, because each alternative implementation must be
tested and maintained separately.

Changing between representations imposes a space and time overhead. It also means more
complexity in the code, and more complicated testing strategies, increasing programmer effort
and making memory use harder to predict.

@, @, @,
0’0 0’0 0’0

Implementation

There are number of issues to take into account when you are using MULTIPLE
REPRESENTATIONS.

1. Implementing the I nterface.

In Java the standard implementation of dynamic binding means defining either a Java class or a
Javainterface. Whichis more suitable? From the point of view of the client, it doesn’t matter;
éither can define an abstract interface. Using a Java interface gives you more flexibility,
because each implementation may inherit from other existing classes as required; however,
extending a common superclass allows several implementations to inherit common
functionality. In C++ there's only the one conventional option for implementing the common
interface: making all implementations inherit from a base class that defines the interface.

There' s a danger that clients may accidentally rely on features on a particular implementation —
particularly non-functional ones — rather than of the common interface. D’ Souza and Wills
[1998] discuss design techniques to avoid such dependencies in components.

2. Binding clients to implementations.

Sometimes you need to support several implementations, though a given client may only ever
use one. For example, the C++ Standard Template Library (STL) iterator classes work on
several STL callections, but any given STL iterator object works with only one [Stroustrup
1997, Austern 1998]. In this case, you can statically bind the client code to use only the one
implementation %2 in C++ you could store objects directly and use non-virtual functions. If,
however, a client needs to use several different object representations interchangeably then you
need to use dynamic binding.

© 1999 Charles Weir, James Noble Page 33



Multiple Representations UNTITLED by Weir, Noble

3. Creating dynamically bound implementations

The only place where you need to reference the true implementation classes in the code is where
the objects are created. In many situations, it's reasonable to hard code the class namesin the
client, asin the following C++ example:

Commonl nterface *anObj ect = new Specificlnpl ementation( paranmeters );

If there’'s a good reason to hide even this mention of the classes from the client, then the
ABSTRACT FACTORY pattern [Gamma et al 1995] can implement a ‘virtual constructor’ [Coplien
1994] so that the client can specify which object to create using just a parameter.

4. Changing between representations

In some cases, an object’ s representation needs to change during its lifetime, usually because a
client needs some behaviour that is not supported well by the object’s current representation.
Changes to an object’ s representation can be explicitly requested by its client, or can be
triggered automatically within the object itsef. Changing representations automatically has
several benefits: the client doesn’t need knowledge of the internal implementation, improving
encapsulation, and you can tune the memory use entirely within the implementation of the
specific object, improving localisation. Changing representations automatically requires
dynamic binding, so clients will use the correct representation without being aware of it. In
some situations, however, the client can have a better knowledge of optimisation strategies than
is available to the object itsdf, typically because the client isin a better position to know which
operations will be required.

4.1. Changing representations explicitly. It is straightforward for an object to let a client
changeits representation explicitly: the object should implement a conversion function (or a
C++ constructor) that takes the common interface as parameter, and returns the new
representation.

class Specificlnplenmentation : public Commonlnterface
{ blic:
puSpeci ficlnplementati on( Commonlnterface c ) {
/1 initialise this fromc
}

H
4.2. Changing representations automatically. You can use the BRIDGE pattern to keep the
interface and identity of the object constant when its internal structure changes (strictly
speaking a *half bridge', sinceit varies only the object implementation and not the abstraction
it supports) [Gamma et al 1995]. The client sees only the bridge object, which delegates all its

operations to an implementation object through a common interface:

© 1999 Charles Weir, James Noble Page 34



Multiple Representations UNTITLED by Weir, Noble

Bridge 1 1| Commoninterface
. Uses . .
Client Function1() Function1()
Function2() | | Function2()
Implementatlon Implementation
B
Function1() Function1()
Function2() Function2()

The bridge class needs the same methods as the common interface; so it’s reasonable (though
unnecessary) in C++ and Java to make the Bridge class derive from the common interface.
Each implementation object will need a construction function taking the common interface as
parameter. Of course, some implementations may store more or less data, so there may be
special cases with more specific constructors.

Some languages make it simple to implement the Bridge object itsdf. In Smalltalk, for
example, you can override the DoesNot Under st and: method to pass any unrecognised
operation on to the implementation object [Lalonde 1994]. In C++ you can implement

oper at or - >() to do the same [Coplien 1994], or alternatively you can avoid deriving the
Bridge class from the common interface and by make all its functions non-virtual and inline.

Example

This Java example implements a Word object with two representations: as a simple string (the
default), and as a string with an additional cached corresponding sound. Both these
representations implement the basic Word interface, which can return either a string or sound
value, and allows clients to choose the most appropriate representation.
interface Wrdlnterface
public byte[] asSound();
public String asString();
public void becomeSound();
public void beconeString();
}
The most important concrete class is the Word class, that acts as a bridge between the Word
abstraction an its two representations, as a sound and as a text string.

class Word inplements Wordlnterface {
private Wordlnterface rep;

public byte[] asSound() {return rep.asSound();}
public String asString() {return rep.asString();}
public void beconmeSound() {rep. becomeSound();}
public void beconmeString() {rep.becomeString();}

The constructor of thewsr d class must select an implementation. It uses the method Becone,
which simply sets the implementation object.

© 1999 Charles Weir, James Noble Page 35



Multiple Representations UNTITLED by Weir, Noble

public Word(String word) {
become(new StringWrdl npl ementation(this, word));

public void beconme(Wrdlnterface rep) {
this.rep = rep;
}

The default implementation stores Wor ds as atext string. It also keeps a pointer to its Word
BRIDGE object, and uses this pointer to automatically change aword' s representation into the
other format. It has two constructors: one, taking a string, is used by the constructor for the
Wor d object; the other, taking awer di nt er f ace, is used to create itsdf from a different
representation.

class StringWrdl npl ementation inplements Wrdlnterface

{
private String word;
private Word bridge;

public StringWrdlnplementation(Wrd bridge, String word) {
this.bridge = bridge;
this.word = word;

}

public StringWrdlnpl ementation(Wrd bridge, Wordlinterface rep) {
this.bridge = bridge;
this.word = rep.asString();

}

It must also provide implementations of all thewor di nt er f ace methods. Note how it must
changeits representation to return itself as a sound; once the asSound method returns this
object will be garbage:

publ i{c byte[] asSound()

becomeSound() ;
return bridge.asSound();

}
public String asString() {return word;}

public void becomeSound() {
bri dge. become(new SoundWor dl npl enent ati on(bridge, this));

}
public void becomeString() {}

Finally, the sound word class is similar to the text version, but also caches the sound
representation. Implementing the sound conversion function is left as an exercise for the reader!

class SoundWor dl npl ement ati on i npl enments Wordlnterface

{
private String word;
private Word bridge;
private byte[] sound;
SoundWor dl npl enent ati on(Word bridge, Wordinterface rep) {
this.bridge = bridge;
this.word = rep.asString();
this.sound = privateConvert StringToSound(this.word);
}
public String asString() {return word;}
public byte[] asSound() {return sound;}
public void beconeString() {
bri dge. become(new Stri ngWordl npl ementati on(bridge, this));
}
public void beconeSound() {}
}

© 1999 Charles Weir, James Noble Page 36



Multiple Representations UNTITLED by Weir, Noble

Known Uses

Symbian’s EPOC C++ environment handles strings as Descriptors containing a buffer and a
length. Descriptors provide many different representations of strings: in ROM, in a fixed-
length buffer, in a variable length buffer and as a portion of another string. Each kind of
descriptor has its own class, and users of the strings see only two base classes: one for a read-
only string, the other for a writable string [ Symbian 1999].

The Psion 5's Word Editor has two internal representations of a document. When the
document is small the editor keeps formatting information for the entire document; when the
document is larger than a certain arbitrary size, the editor switches to storing information for
only the part of the document currently on display. The switch is handled internally to the
Editor’s‘ Text View' component; clients of the component (including other applications that
need rich text) are unaware of the change in representation.

Smalltalk’s collection classes also use this pattern: all satisfy the same protocol, so a user need
not be aware of the particular implementation used for a given collection [Goldberg and
Robson 1983]. Java's standard collection classes have a similar design [Chan et al 1998].
C++'s STL collections also use this pattern: STL defines the shared interface using template
classes; al the collection classes support the same access functions and iterator operations
[Stroustrup 1997, Austern 1998].

Rolfe& Nolan's Lighthouse system has a ‘Deal’ class with two implementations: by default an
instance contains only basic data required for simple calculations; on demand, it extends itself
reading the entire deal information from its database. Since clients are aware when they are
doing more complex calculations, the changeis explicit, implemented as a Fat t enDeal
method on the object.

MULTIPLE REPRESENTATIONS can also be useful to implement other memory saving patterns. For
examplethe LOOM Virtual Memory system for Smalltalk uses two different representations
for objects: one for objects completely in memory, and a second for objects PAGED out to
SECONDARY STORAGE [Kaehler and Krasner 1983]. Format Software' s PLUS application
implements CarPTAIN OATES for images using three representations, which change dynamically: a
bitmap ready to bi t bl t to the screen, a compressed bitmap, and a reference to a representation
in the database.

See Also

The BrIDGE pattern describes how abstractions and implementations can vary independently
[Gamma et al 1994]. TheMULTIPLE REPRESENTATIONS pattern typically uses only half of the
BRIDGE pattern, because implementations can vary (to give the multiple representations) but the
abstraction remains the same.

Various different representations can use explicit PAckep DATA or CoMPRESSION, be stored in
SECONDARY STORAGE, be READ-ONLY, or be SHARED. They may also use FIXED ALLOCATION Of
VARIABLE ALLOCATION.

© 1999 Charles Weir, James Noble Page 37



