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 How can you fit a quart of data into a pint pot of memory?

• The memory requirements of the code and data appear greater than the memory
available, whether primary memory, secondary storage, read-only memory or some
combination of these

• You cannot reduce the functionality and omit some of the data or code

• You need to transmit information across a communications link as quickly as possible.

• You cannot choose SMALL DATA STRUCTURES to reduce the memory requirements further

Sometimes you just don’t have enough memory to go around.  The most usual problem is that
you need to store more data than the space available, but sometimes the executable code can be
too large.    You can often choose suitable DATA STRUCTURES to ensure that the right amount of
memory is allocated to store the data; you can also use SECONDARY STORAGE and READ-ONLY

STORAGE move the data out of RAM.  These techniques have one important limitation, however:
they don’t reduce the total amount of storage, of all kinds, needed to support the whole system.

For example, the Strap-It-On wrist-mounted PC needs to store the data for the documents the
user is working on.  It also needs sound files recorded by the internal microphone, data traces
from optional body well-being monitors, and a large amount of executable code downloaded by
the user to support “optional applications” (typically Tetris, Doom and Hunt-the-Wumpus, but
sometimes work-related programs as well!).  This information can certainly exceed the capacity
of the Strap-It-On’s primary memory and secondary storage combined.   How can we improve
the Strap-It-On’s usability without forcing every user to carry around the optional 2 Gb disk
back-pack?

No matter how much memory such a system may have, you will always find users who need
more.  Extra storage is expensive, so you should use what you have as effectively as possible.

Therefore:  Use a compressed representation to reduce the memory required.

Store the information in a compressed form and decompress it when you need to access it.
There are a wide variety of compression algorithms and approaches you can choose from, each
with different space and time trade-offs.

So, for example, the Strap-It-On PC stores its voice sound files using GSM compression; its
music uses MP3; its data traces use DIFFERENCE COMPRESSION; its databases use TABLE

COMPRESSION; and its documents are stored using GZIP. The device drivers for Strap-It-On’s
secondary storage choose the appropriate ADAPTIVE COMPRESSION technique based on the file
type, ensuring all files are stored in a compressed form.

Consequences
The memory requirements of your system decrease because compressed code and data need less
space than uncompressed code or data.  Some forms of time performance may also improve –
for example, reading from slow secondary storage devices or over a network.

However: Compressed information is often more difficult to process from within the program.
Some compression techniques prevent random access to the compressed information.   You may
have to decompress an entire data stream to access any part of it – requiring enough main
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memory to store all the decompressed information, in addition to the memory needed for the
decompression itself.

The program has to provide compression and decompression support, making it more complex
to maintain, requiring a fair amount of programmer effort to implement,  increasing the testing
cost of the program and reducing the realtime responsiveness.

The compression process also takes time and extra temporary memory increasing the
possibilities for failure; compression can also increase a program’s power consumption. In
some cases – program code, resource file data, and information received via telecommunications
– the compression cost may be paid once by large powerful machines better able to handle it.
The amount of memory required to store a given amount of data becomes less predictable,
because it depends upon well the data can be compressed.

v v v

Implementation
The key idea behind compression is that most data contains a large amount of redundancy —
information that is not strictly required [Bell, Cleary, Whitten, 1990].  The following sections
explore several types of redundancy, and discuss compression techniques to exploit each type.

1. Mechanical Redundancy

Consider the ASCII character set.  ASCII defines around 100 printable characters, yet most text
formats use eight, sixteen, or even thirty-two bits to store characters for processing on modern
processors.  You can store ASCII text using just seven bits per character; this would reduce
memory used at a cost of increased processing time, because most processors handle eight or
thirty-two bit quantities much more easily than seven bit quantities. Thus, 1 bit in a single byte
encoding, or 9 bits in a sixteen bit UNICODE encoding are redundant. This kind of redundancy
is called mechanical redundancy.

For text compression, the amount of compression is usually expressed by the number of
(compressed) bits required per character in a larger text.   For example, storing ASCII
characters in seven bit-bytes would give a compression of 7 bits per character.   For other forms
of data we talk about the compression ratio – the compressed size divided by the decompressed
size.   Using 7 bit ASCII to encode a normal 8-bit ASCII file would give a compression ratio of
7/8, or 87.5%.

TABLE COMPRESSION and SEQUENCE CODING explore other related forms of mechanical
redundancy.

2. Semantic Redundancy

Consider the traditional English song:

Verse 1:
Voice: Whear ‘as tha been sin’ I saw thee?

Reply: I saw thee
Chorus:  On Ilkley Moor Bah t’at
Voice: Whear ‘as tha been sin’ I saw thee?

Reply: I saw thee
Voice: Whear ‘as tha been sin’ I saw thee?

Chorus:  On Ilkley Moor Bah t’at
Reply:  Bah t’at

Chorus: On Ilkley Moor Bah t’at
On Ilkley Moor Bah t’at



Major Technique: Compression Small Memory Systems  by Weir, Noble

© 2000 Charles Weir, James Noble Page 3

Verse 2:
Voice: Tha’s been a-coortin’ Mary Jane

Reply: Mary Jane
Chorus:  On Ilkley Moor Bah t’at

…  etc., for 7 more verses.

This song has plenty of redundancy because of all the repeats and choruses; you don’t need to
store every single word sung to reproduce the song.  The songbook ‘Rise up singing’ [Blood
and Paterson 1992] uses bold type, parentheses and repetition marks to compress the complete
song to 15 short lines, occupying a mere 6 square inches on the page without compromising
readability:

1. Whear ‘ast tha been sin’ I saw thee (I saw thee)
On Ilkley Moor Bah T’at
Whear ‘ast tha been sin’ I saw thee (2x)

On Ilkley Moor bah t’at (bah t’at) on Ilkley Moor bah t’at
On Ilkely Moor bah t’at.
2. Tha’s been a-coortin’ Mary Jane
3. Tha’ll go an’ get thee death o’ cowld

… etc., for 6 more lines

LZ compression (see ADAPTIVE COMPRESSION) and its variants use a similar but mechanical
technique to remove redundancy in text or binary data.

3.  Lossy Compression

Compression techniques that ensure that the result of decompression is exactly the same data as
before compression are known as lossless.  Many of the more powerful forms of compression
are lossy. With lossy compression, decompression will produce an approximation to the original
information rather than an exact copy.  Lossy compression uses knowledge of the specific kind
of data being stored, and of the required uses for the data.

The key to understanding lossy compression is the difference between data and information.
Suppose you wish to communicate the information represented by the word “elephant” to an
audience.  Sent as a text string, ‘elephant’ occupies 8 7-bit ASCII characters, or 56 bits.
Alternatively, as a spoken word encoded in 16 bit samples 8000 times per second, ‘elephant’
requires 1 second of samples, i.e. 128 KBits.  A full-screen colour image of an elephant at
640*480 pixels might require 2.5 Mbits, and a video displayed for one second at 50 frames per
second could take 50 times that, or 125 Mbits. None of the more expensive techniques convey
much more information than just the text of “elephant”, however.  If all you are interested in the
basic concept of an “elephant”, most of the data required by the other techniques is redundant.
You can exploit this redundancy in various ways.

Simplest, you can omit irrelevant data.  For example you might be receiving uncompressed
sound data represented as 16 bit samples.  If your sound sampler isn’t accurate enough to
record 16-bit samples, the least significant 2 bits in each sample will be random, so you could
achieve a simple compression by just storing 14 instead of 16 bits for each sample.

You can also exploit the nature of human perception to omit data that’s less important.  For
example, we perceive sound on a ‘log scale’; the ear is much less sensitive to differences in
intensity when the intensity is high than when intensity is low.  You can effectively compress
sound samples by converting them to a log scale, and supporting only a small number of
logarithmic intensities.  This is the principle of some simple sound compression techniques,
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particularly mu-law and a-law, which compress 14 bit samples to 8 bits in this way [CCITT
G.711, Brokish and Lewis 1997].

You can take this idea of omitting data further, and transform the data into a different form to
remove data irrelevant to human perception.  Many of the most effective techniques do this:

JPEG The most commonly used variants of the JPEG standard represent each 8x8 pixel
square as a composite of a standard set of 64 ‘standard pictures’ – a fraction of each
picture.  The transformation is known as the ‘cosine transform’.   Then the fractions are
represented in more or less detail according to the importance of each to human
perception.  This gives a format that compresses photographic data very effectively.
[ITU T.87, Gonzalez and Woods 1992]

GSM GSM compression represents voice data in terms of a mathematical model of the human
voice (Regular Pulse Excited Linear Predictive Coding)1.  In this way it encodes
separate 20mS samples in just 260 bits, allowing voice telephony over a digital link of
only 13 Kbps.  [Degener 1994]

GIF, PNG The proprietary GIF and standard PNG formats both map all colours in an
image to a fixed-size palette before encoding. [CompuServe 1990, Boutell 1996].

MP3 MP3 represents sound data in terms of its composite frequencies – known as the
‘Fourier Transformation’.  The MP3 standard specifies the granularity of
representation of each frequency according to its importance to the human ear and the
amount of compression required, allowing FM radio-quality sound in 56 Kb per second
[MP3].

MPEG The MPEG standard for video compression uses JPEG coding for initial frames.  It
then uses a variety of specific techniques – to spot motion in a variety of axes, changes
of light, etc. – to encode the differences between successive frames in minimal data
forms that fit in with the human perception of a video image [MPEG].

Some of these techniques exploit mechanical redundancy in the resulting data as well, using
TABLE COMPRESSION, DIFFERENCE CODING and ADAPTIVE techniques.

v v v

Specialised Patterns
The rest of this chapter contains specialised patterns describing compression and packing
techniques.  Each of these patterns removes different kinds of mechanical and semantic
redundancy, with different consequences for accessing the compressed data.

                                                  
1 GSM was developed using Scandinavian voices; hence all voices tend to sound Scandinavian on a
mobile phone.
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Figure 1: Compression Patterns

The patterns are as follows:

• TABLE COMPRESSION reduces the average number of bits to store each character (or
value) by mapping it to a variable number of bits, such that the most common characters
require the fewest bits.

• DIFFERENCE COMPRESSION addresses data series or sequences, by storing only the
differences between successive items.  Alternatively or additionally, if several successive
items are the same it stores simply a count of the number of identical items.

• ADAPTIVE COMPRESSION analyses the data before or while compressing it to produce a
more efficient encoding, storing the resulting parameters along with the compressed data
– or uses the data itself as a table to support the compression.

The PACKED DATA pattern, that reduces the amount of memory allocated to store random-access
data structures, can also been seen as a special kind of compression.

1. Evaluating Compression Techniques

There are many possible compression techniques. Here are some of the things to consider when
choosing an appropriate technique:

1.1 Processing and Memory Required.  Different techniques vary significantly in the
processing and memory costs they impose.  In general, DIFFERENCE CODING has the lowest
costs, followed by fixed TABLE COMPRESSION, and most forms of ADAPTIVE COMPRESSION have
quite high costs on both counts – but there are many exceptions to this rule.  Managing
Gigabytes [Witten, Moffat, Bell 1999] examines the costs in some detail.

1.2. Encoding vs. Decoding.  Some compression algorithms reduce the processing cost of
decoding the data by increasing the cost of encoding.  This is particularly advantageous if there
is one large and powerful encoding system and many decoders with a lower specification.  This
is a situation common in broadcast systems.

MP3 and MPEG, for example, require much more processing, code and memory to encode than
decode, which suits them for broadcast transmission [MP3,MPEG]. Interestingly LZ ADAPTIVE

COMPRESSION has the same feature, so ZIP archives can be distributed with their relatively
simple decoding software built-in [Ziv and Lempel 1977].
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Some compressed representations can be used directly without any decompression. For
example, Java and Smalltalk use byte coding to reduce the size of executable programs;
intermediate codes can be smaller than full machine language [Goldberg and Robson 1983,
Lindholm and Yellin 1999].  These byte codes are designed so that they can be interpreted
directly by a virtual machine, without a separate decompression step.

1.3. Programming Cost.  Some techniques are simple to implement; others have efficient
public domain or commercial implementations.  Rolling your own complicated compression or
decompression algorithm is unlikely to be a sensible option for many projects.

1.4. Random Access and Resynchronisation.  Most compression algorithms produce a stream
of bits.  If this stream is stored in memory or in a file, can you access individual items within
that file randomly, without reading the whole stream from the beginning?  If you’re receiving
the stream over a serial line and the some is corrupted or deleted, can you resynchronise that
data stream, that is, can you identify the start of a meaningful piece of data and continue
decompression?  In general, most forms of TABLE COMPRESSION can provide both random
access and resynchronisation; DIFFERENCE CODING can also be tailored to handle both;
ADAPTIVE COMPRESSION, however, is unlikely to work well for either.

Known Uses
Compression is used very widely.  Operating systems use compression to store more
information on secondary storage, communications protocols use compression to transmit
information more quickly, virtual machines use compression to reduce the memory requirements
of programs, and general purpose file compression tools are use ubiquitously for file archives.

See Also
As well as compressing information, you may be able to store it in cheaper SECONDARY

STORAGE or READ ONLY MEMORY.    You can also remove redundant data using SHARING

The excellent book ‘Managing Gigabytes’ [Witten, Moffat, Bell, 1999] explains all of this
chapter’s techniques for compressing text and images in much greater detail.  ‘Text
Compression’ [Bell, Cleary, Witten 1990] focuses on text compression.

 The online book, ‘Information Engineering Across the Professions’ [Cyganski, Orr, and Vaz
1998] has explanations of many different kinds of Text, Audio, Graphical and Video
compression.

The FAQ of the newsgroup comp.compression describes many of the most common
compression techniques. Steven Kinnear’s web page [1999] provides an introduction to
multimedia compression, with an excellent set of links to other sites with more detail.

‘Digital Video and Audio Compression’ [Solari 1997] has a good description of techniques for
multimedia compression.

 ______________________________
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Table Compression Pattern
Also know as: Nibble Coding, Huffman Coding.

How do you compress many short strings?

• You have lots of small-to-medium sized strings in your program —  all different

• You need to reduce your program’s memory requirements.

• You need random access to individual strings.

• You don’t want to expend too much extra programmer effort, memory space, or
processing time on managing the strings.

Many programs use a large number of strings —  stored in databases, read from RESOURCE

FILES, received via telecommunications links or hard-coded in the program.  All these strings
increase the program’s memory requirements for main memory, read-only memory, and
secondary storage.

Programs need to be able to perform common string operations such as determining their length
and internal characters, concatenating strings, and substituting parameters into format strings,
however strings are represented.  Similarly, each string in a collection of strings needs to be
individually accessible.  If the strings are stored in a file on secondary storage, for example, we
need random access to each string in the file.

Although storing strings is important, it is seldom the most significant memory use in the
system.  Typically you don’t want to put to much programmer effort into the problem.
Equally, you may not want to demand too much temporary memory to decompress each string.

For example, the Strap-It-On PC needs to store and display a large number of information and
error messages to the user.  The messages need to be stored in scarce main memory or read-only
memory, and there isn’t really enough space to store all the strings directly.  The Programs must
be able to access each string individually, to display them to the user when appropriate.  Given
that many of the strings describe exceptional situations such a memory shortage, they need to be
able to be retrieved and displayed quickly, efficiently, and without requiring extra memory.

Therefore: Encode each element in a variable number of bits so that the more common elements
require fewer bits.

The key to table compression is that some characters are statistically much more likely to occur
than others.   You can easily map from a standard fixed size representation to one where each
character takes a different number of bits.  If you analyse the kind of text you’re compressing to
find which characters are most probable, and map these characters to the most compact
encoding, then on average you’ll end up with smaller text.

For example the chart below shows the character frequencies for all the lower-case characters
and spaces in a draft of this chapter.
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Figure 2 Distribution of Characters in this Chapter

Obviously some characters (space, ‘e’) appear much more often than others do (‘z’, ‘j’). A
surprisingly large proportion of the characters is never used at all2.  The most common
character, space, occupies 15% of the memory required to hold the chapter.  The 15 most
common characters occupy 75% of the total memory.

Given that the Strap-It-On’s information and error messages have a similar distribution of
characters, its designers get a significant reduction in the storage space required by encoding the
most common characters in fewer bits, and the less common characters in more bits.  Using the
Huffman Encoding as described below, the designers of the Strap-it-on have achieved
compression of 5 bits per character for its error messages, with negligible costs in run-time
performance and temporary memory costs.

Consequences
Typically you get a reasonable compression for the strings themselves, reducing the program’s
memory requirements.  Sequential operations on compressed strings execute almost as fast as
operations on native strings, preserving time performance. String compression is quite easy to
implement, so it does not take much programmer effort. Each string in a collection of
compressed strings can be accessed individually, without decompressing all proceeding strings.

However: the total compression of the program data – including non-string data – isn’t high, so the
program’s memory requirements may not be greatly reduced.

String operations that rely on random access to the characters in the string may execute up to an
order of magnitude slower than the same operations on decompressed strings, reducing the
program’s time performance.  Because characters may have variable lengths, you can only
access a specific character by scanning from the start of the string.  If you want operations that
change the characters in the string you have to uncompress the string, make the changes, and
recompress it.

It requires programmer discipline to use compressed strings, especially for string literals within
the program code. Compressed strings require either manual encoding or a string pre-processing
pass, either of which increases complexity.

                                                  
2 Well, hardly ever. [kjxcheck reference:Gilbert&Sullivan]
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You have to test the compressed string operations, but these tests are quite straightforward.

v v v

Implementation
There are many techniques used for table compression [Whitten et al 2000].   The following
sections explore a few common ones.

1. Simple coding

If the underlying character set has only 128 characters, such as ASCII, it certainly makes sense
to store each character in seven bits, rather than eight, sixteen, or thirty-two bits.  But, as we
discussed above, in fact a large proportion of normal text could be encoded in just four bits.
Other non-European languages might be better with five or six bits.

If you encode most of the text into, say, small fixed size characters, what do you do with the
characters not within the most common set?  The answer is to use ‘escape codes’.  An escape
code is a special character that changes the meaning of the following character (or sometimes of
the characters up to the next escape code).

For example, a common simple coding technique is to use a nibble code, where each character
is coded into four bits.  A nibble code is a easy to implement, because a nibble is always half a
byte, making it easy to write the packed data.  In a basic nibble code, we might have only one
escape code, which is followed by the eight-bit ASCII code of the next character.  So using the
data in figure xx above to deduce the most common characters, we can construct an encoding
and decoding table as follows:

Plain text Encoded
Nibbles

Encoded Bits

? 0 0000
a 4 0100
b F 6 1 1111 0110 0001
c F 6 2 1111 0110 0010
d D 1101
e 1 0001
f F 6 5 1111 0110 0101
… etc

Thus the phrase “All the world’s a stage” would encode as follows:

Nibble coding

A l l t h e w o r l d ' s a s t a g e
Uncompressed sequence

Compressed representation
F 4 1 A A 0 2 C 1 0 3 6 A DF 7 7 5 0 4 0 5 2 4F 2 7 F 6 7 1 F

All values in hexadecimal.
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Using this nibble code, 75% of characters in this chapter can be encoded in a 4 bits; the
remainder all require 12 bits.  On this simple calculation the average number of bits required
per character is 6 bits; when we implemented the nibble code and tested it on the file, we
achieved 5.4 bits per character in practice.

2. Huffman Coding

Why choose specifically 4 bits for the most common characters and 12 bits for the escaped
characters?  It would seem more sensible to have a more even spread, so that the most common
characters (e.g. space) use less than four bits, fairly common characters (‘u’, ‘w’) require
between four and eight bits, and only the least common ones (‘Q’, ‘&’) require more.  Huffman
Coding takes this reasoning to its extreme.  With Huffman coding, the ‘Encoded bits’ column in
table xxx becomes will contain bit values of arbitrary lengths instead of either 4 or 12 [Huffman
1952].

Decoding Huffman data is a little trickier.  Since you can’t just look up an unknown length bit
string in an array, Huffman tables are often represented as trees for decoding; each terminal
node in the tree is a decoded character.  To decode a bit string, you start at the root, then take
the left node for each 1 and the right node for each 0.  So, for example, if you had the following
simple encoding table for a 4-character alphabet, where A is the most frequent character in your
text, then D, then B and C:

Plain Text Encoded Bits
A 1
B 010
C 011
D 00

This can be represented as a Huffman Tree as:

0

0 1

1

0 1

A

CB

D

Start

Figure 3: Huffman Tree

For more about Huffman coding – more efficient decoding techniques and a discussion on
generating the Huffman encoding tables – see ‘Managing Gigabytes’ [Witten, et al 1999] or any
other standard reference on text compression.
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3. Encoding more than just characters

There’s no need to limit TABLE COMPRESSION to strings; anything that contains data items of
fixed numbers of bytes can be compressed in this way.  Other compression techniques, for
example, often apply Huffman coding to their intermediate representations to increase their
compression ratios (see, for example, the ADAPTIVE COMPRESSION technique GZIP).

TABLE COMPRESSION does not have to be restricted to compressing fixed-length items, as long as
each item has a clearly defined end.  For example, Huffman Word Compression achieves very
high compression ratios (3 bits per character or so) by encoding each word separately [Witten,
et al 1999].  To achieve this ratio, Huffman Word Compression requires a very large
compression table – the size of the dictionary used.

4. Compressing String Literals

Compressed strings are more difficult to handle in program code.  While programming
languages provide string literals for normal strings, they do not generally support compressed
strings.  Most languages support escape codes (such as “\x34”) that allow any numeric
characters to be stored into the string. Escape codes can be used store compressed strings in
standard string literals.  For example, here’s a C++ string that stores the nibble codes for the
“All the world’s a stage” encoding in figure XX.

const char* AllTheWorldsAStage =
          "\xf4\x1a\xa0\x2c\x10\xf7\x73\x6a\xdf\x27\x50\x40\x52\x4f\x67\x1f";

You can also write a pre-processor to work through program texts, and replace standard
encoded strings with compressed strings. This works particularly well when compressed strings
can be written as standard string or array literals.   Alternatively, in systems that store strings in
RESOURCE FILES, the resource file compiler can compress the string, and the resource file reader
can decompress it.

5. UTF8 Encoding

To support internationalisation, an increasing number of applications do all their internal string
handling using two-byte character sets – typically the UNICODE standard [Unicode 1996].
Given that the character sets for most European languages require less than 128 characters, the
extra byte is clearly redundant.  For storage and transmission, many environments encode
UNICODE strings using the UTF8 encoding.

In UTF8, each UNICODE double byte is encoded into one, two or three bytes (though the
standard supports further extensions).  The coding encodes the bits as follows:

UNICODE value 1st Byte 2nd Byte 3rd Byte

000000000xxxxxxx 0xxxxxxx

00000yyyyyxxxxxx 110yyyyy 10xxxxxx

Zzzzyyyyyyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

So in UTF8, the standard 7-bit ASCII characters are encoded in a single byte; in fact, the
UNICODE encoding is exactly the same as the one byte ASCII encoding for these characters.
Common extended characters are encoded as two bytes, with only the least common characters
requiring three bytes.  Every UTF8 character starts and ends on a byte boundary, so you can
identify a substring within a larger buffer of UTF8 characters using just a byte offset and a
length.
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UTF8 wasdesigned to be especially suitable for transmission along serial connections.  A
terminal receiving UTF8 characters can always determine which byte represents the start of a
UNICODE character, because either their top bit is 0, or the top two bits are ‘11’. Any UTF8
bytes with the top bits equal to “10” are always 2nd or 3rd in sequence and should be ignored
unless the terminal has received the initial byte.

Example
This example implements a nibble code to compress the text in this chapter.  Figure 3 below
shows the distribution of characters in the text, sorted by frequency, with the 15 most common
characters to the left of the vertical line.
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 Figure 4 Choosing the 15 most common characters.

Here is a Java example that implements this nibble code.  The StringCompression class uses
a byte array output stream to simplify creating the compressed string —  the equivalent in C++
would use an ostrstream instance.  The most common characters are represented in the string
NibbleChars:

    protected final String NibbleChars = " etoasrinclmhdu";
    protected final int NibbleEscape = 0xf;
    protected int lastNibble;
    protected ByteArrayOutputStream outStream;

The encodeString method takes each fixed-size character and encodes it, character by
character.  This function has to deal with end effects, ensuring the last nibble gets written to the
output file by padding it with an escape character.

protected byte[] encodeString(String string) {
        outStream = new ByteArrayOutputStream();
        lastNibble = -1;
        for (int i = 0; i < string.length(); i++) {
            encodeChar(string.charAt(i));
        }
        if (lastNibble != -1) {
            putNibble(NibbleEscape);
        }
        byte[] result = outStream.toByteArray();
        outStream = null;
        return result;
}

The most important routine encodes a specific character.  The encodeChar method searches
the NibbleChars string directly; if the character to be encoded is in the string it is output as a
nibble, otherwise we output an escape code and a high and low nibble.  A more efficient
implementation could use a 256-entry table lookup.



Table Compression Pattern Small Memory Systems  by Weir, Noble

© 2000 Charles Weir, James Noble Page 13

protected void encodeChar(int charCode) {
        int possibleNibble = NibbleChars.indexOf(charCode);
        if (possibleNibble != -1) {
            putNibble(possibleNibble);
        } else {
            putNibble(NibbleEscape);
            putNibble(charCode >>> 4);
            putNibble(charCode & 0xf);
        }
    }

The putNibble method simply adds one nibble to the output stream.  We can only write whole
bytes, rather than nibbles, so the lastNibble variable stores a nibble than has not been output.
When another nibble is received, both lastNibble and the current nibble n can be written as a
single byte:

protected void putNibble(int nibble) {
        if (lastNibble == -1) {
            lastNibble = nibble;
        } else {
            outStream.write((lastNibble << 4) + nibble);
            lastNibble = -1;
        }
    }
}

Decoding is similar to encoding.  For convenience, the decoding methods belong to the same
class; they use a ByteArrayInputStream to retrieve data.  The decodeString method reads
a character at a time and appends it to the output:

    protected ByteArrayInputStream inStream;

    protected String decodeString(byte [] inBuffer) {
        inStream = new ByteArrayInputStream(inBuffer);
        StringBuffer outString = new StringBuffer();
        lastNibble = -1;
        int charRead;
        while ((charRead = decodeChar()) != -1) {
            outString.append( (char)charRead );
        }
        return outString.toString();
    }

The decodeChar method reads as many input nibbles as are required to compose a single
character.

    protected int decodeChar() {
        int s = getNibble();
        if (s == -1) return -1;
        if (s != NibbleEscape) {
            return NibbleChars.charAt(s);
        } else {
            s = getNibble();
            if (s == -1) return -1;
            return (s << 4) + getNibble(); }
    }

Method getNibble actually returns one nibble from the input stream, again keeping the extra
nibble in the lastNibble field when a full byte is read by only one nibble returned.
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    protected int decodeChar() {
        int nibble = getNibble();
        if (nibble == -1) {
            return -1;
        }
        if (nibble != NibbleEscape) {
            return NibbleChars.charAt(nibble);
        } else {
            nibble = getNibble();
            if (nibble == -1) {
                return -1;
            }
            return (nibble << 4) + getNibble();
        }
    }

Nibble encoding can be surprisingly effective.  For example a text-only version of this chapter
compresses to just 5.4 bits per char (67%) using this technique.  Similarly, the complete set of
text resources for a release of the EPOC32 operating system would compress to 5.7 bits per
character (though as the total space occupied by the strings is only 44 Kb, the effort and extra
code required have so far not been worthwhile).

v v v

Known Uses
Reuters worldwide IDN network uses Huffman encoding to reduce the bandwidth required to
transmit all the world’s financial market prices worldwide.  The IDN Huffman code table is
reproduced and re-implemented in many different systems.

GZIP uses Huffman encoding as part of the compression process, though their main
compression gains are from ADAPTIVE COMPRESSION. [Deutsch 1996]

The MNP5 and V42.bis modem compression protocols uses Huffman Encoding to get
compression ratios of 75% to 50% on typical transmitted data [Held 1994].

Nibble codes were widely used in versions of text adventure games for small machines [Blank
and Galley 1980]. Philip Gage used a similar technique to compress an entire string table [Gage
97]. Symbian’s EPOC16 operating system for the Series 3 used table compression for its
RESOURCE FILES [Edwards 1997].

Variants of UTF8 encoding are used in Java, Plan/9, and Windows NT to store Unicode
characters [Unicode 1996, Lindholm and Yellin 1999, Pike and Thompson 1993].

See Also
Many variants of table compression are also ADAPTIVE, calculating the optimal table for each
large section of data and including the table with the compressed data.

Compressed strings can be stored in RESOURCE FILES in SECONDARY STORAGE or READ-ONLY

MEMORY, as well as primary storage. Information stored in DATA FILES can also be compressed.

Witten, Moffat, and Bell [1999] and Cyganski, Orr, and Vaz [1998] discuss Huffman Encoding
and other forms of table compression in much more detail than we can give here.  Witten,
Moffat and Bell also includes discussions of memory and time costs for each technique.

Business Data Communications and Networking [Fitzgerald and Dennis 1995] provides a good
overview of modem communications.  Sharon Tabor’s course materials for ‘Data
Transmission’ [2000] provide a good terse summary.  The ‘Ultimate Modem Handbook’
includes an outline of various modem compression standards [Lewart 1999].

 ______________________________
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Difference Coding Pattern
Also know as: Delta Coding, Run Length Encoding

How can you reduce the memory used by sequences of data?

• You need to reduce your program’s memory requirements

• You have large streams of data in your program

• The data streams which will be accessed sequentially

• There are significant time or financial costs of storing or transferring data.

Many programs use sequences or series of data —  for example, sequential data such as audio
files or animations, time series such as stock market prices, values read by a sensor, or simply
the sequence of bytes making up program code. All these sequences increase the program’s
memory requirements, or worsen the transmission time using a telecommunications link.

Typically this sort of streamed data is accessed sequentially, beginning at the first item and then
processing each item in turn.  Programs rarely or never require random access into the middle of
the data.  Although storing the data is important, it often isn’t the largest problem you have to
face —  gathering the data is often much more work than simply storing it.  Typically, you don’t
want to devote too much programmer effort, processing time, or temporary memory to the
compression operations.

For example, the Strap-It-On PC needs to store results collected from the Snoop-Tronic series
of body wellbeing monitors.  These monitors are attached onto strategic points on the wearer’s
body, and regularly measure and record various physiological, psychological, psychiatric and
psychotronic metrics (heartbeats, blood-sugar levels, alpha-waves, influences from the planet
Gorkon, etc).  This information needs to be stored in the background while the Strap-It-On is
doing other work, so the recording process cannot require much processor time or memory
space.  The recording is continuous, gathering data whenever the Strap-It-On PC and Snoop-
Tronic sensors are worn and the wearer is alive, so large amounts of data are recorded.
Somehow, we must reduce the memory requirements of this data.

Therefore: represent sequences according to the differences between each item.

Continuous data sequences are rarely truly random —  the recent past is often an excellent guide
to the near future.  So in many sequences:

• The values don’t change very much between adjacent items, and
• There are ‘runs’, where is no change for several elements.

These features result in two complementary techniques to reduce the number of bits stored per
item:

• Delta Coding stores just differences between each successive item.
• Run-length Encoding (RLE) replaces a run of identical elements with a repeat count.

For example, in the data stored by the Snoop-Tronic monitors, the values read are very close or
the same for long periods of time.  The Strap-It-On PCs driver for the Snoop-Tronic sensors
uses sequence coding on the data streams as they arrive from each sensor, buffers the data, and
stores it to secondary storage —  without imposing a noticeable overhead on the performance of
the system.
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Consequences
Difference compression can achieve an excellent compression ratio for many kinds of data
(particularly cartoon-style picture data and some forms of sound data) reducing the program’s
memory requirements.  Sequential operations on the compressed data can execute almost as
fast as operations on native values preserving time performance and real-time responsiveness,
and considerably improving time performance if there are slow disk or telecommunication links
involved.

Difference compression is quite easy to implement, so it does not take much programmer effort,
or extra temporary memory.

However:  The compressed sequences are more to difficult to manage than sequences of absolute data
values.  In particular, it is difficult to provide random access into the middle of compressed
sequences without first uncompressing them, requiring temporary memory and processing time.

Some kinds of data – such as hi-fi sound or photographic images – don’t reduce significantly
with DIFFERENCE COMPRESSION.

You have to test the compressed sequence operations, but these tests are quite straightforward.

v v v

Implementation
Here are several difference coding techniques that you can consider:

1.  Delta Coding

Delta coding (or difference coding) stores differences between adjacent items, rather than the
absolute values of the items themselves [Bell et all 1990].  Delta coding saves memory space
because deltas can often be stored in smaller amounts of memory than absolute values. For
example, you may be able to encode a slowly varying stream of sixteen bit values using only
eight-bit delta codes.

Of course, the range of values stored in the delta code is less than the range of the absolute item
values (16-bit items range from 0 to 65536, while 8 bit deltas give you +- 127).  If the
difference to be stored is larger than the range of delta codes, typically the encoder uses an
escape code (a special delta value, say –128 for an 8-bit code) followed by the full absolute
value of the data item.

Figure xx below shows such a sequence represented using delta coding.  All values are in
decimal, and the escape code is represented as ‘? ’:

Delta coding

2048 2059 2048 1848 1848 2049 2150 2150 2150 2150 2150 2150 2151
Uncompressed sequence

Compressed representation
n 8 0 11 -11 n 7 56 0 n 8 1 101 0 0 0 0 0 1

All values in decimal. n = escape code

Figure 5: Delta Coding
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2.  Run Length Encoding

Run-length encoding compresses a run of duplicated items by storing the value of the duplicated
items once, followed by the length of the run [Bell et all 1990].  For example, we can extend the
delta code above to compress runs by always following the escape code by a count byte as well
as the absolute value.  Runs of between 4 and 256 items can be compressed as the escape code,
the absolute value of the repeated item, and the count.  Runs of longer than 256 items can be
stored as repeated runs of 256 characters, plus one more run of the remainder.  Figure XX
shows RLE added to the previous example:

Run length encoding

2048 2059 2048 1848 1848 2049 2150 21512150 2150 2150 2150 2150
Uncompressed sequence

Compressed representation
n 8 0 1 11 -11 n 7 56 1 0 n 1 8 1 101 n 1 8 102 5 1

All values in decimal. n = escape code

Figure 6: Run Length Encoding and Delta Coding

3. Lossy Difference Compression

Here are some common techniques that increase the compression ratio of sequence compression
by losing some of the information compressed:

1. You can treat a sequence with only negligible differences in values as if they were a run of
items with identical values.  For example, in the data series above, differences within a
quarter of a percent of the absolute value of the data items may not be significant in the
analysis.  Quite possibly they could be due to noise in the recording sensor or the ambient
temperature when the data item was recorded. A quarter of one percent of 2000 is 20 —  so
we can code the first three items as a run.

2. You can handle large jumps in delta values by allowing a lag in catching up.  Thus, for
example, the difference of 200 between 2048 to 1848 can be represented as two deltas,
rather than an escape code.

Using these two techniques, we can code the example sequence as shown in figure XX:

1848 1848   2049    2150    2150    2150    2150    2150    2150    2151
Uncompressed sequence

Compressed representation

2048 2059 2048

n 8 0 3 -127 -73 n 1 8 101 8

All values in decimal. n = escape code

Figure 7: Lossy Sequence Compression
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3. You can increase the granularity of the delta values, so that each delta value is scaled by the
magnitude of the items they are representing.  So, for example, each delta step could be the
nearest integer below 0.25% of the previous item’s value, allowing much larger deltas.

4.  Resynchronisation

Sequence compression algorithms are often used for broadcast communications and serial or
network connections.  In many cases, particularly with multimedia data streams, it doesn’t
matter very much if part of the sequence is lost or corrupted, so long as later data can be read
correctly.  Because difference codes assume the receiver knows the correct value for the last
item (so that the next item can be computed by adding the difference), one wrong delta means
that every subsequent delta will produce the wrong value.  To avoid this problem, you can
include resynchronisation information; every now and again you can send a complete value as
escape code, instead of a delta. The escape code resets the value of the current item, correcting
any accumulated error due to corruption or lost data.

5.  Non-numeric data

Difference Coding can also be very effective at compressing non-numeric data structures.  In
Delta Coding, the deltas will be structures themselves; for RLE represents events where the
structures haven’t changed.   For example, you can think some forms of the Observer pattern
[Gamma et al 1995] as examples of delta compression: the observer is told only the changes
that have happened.

Similarly you can do run-length encoding using a count of a number of identical structures.  For
example the X Window System can return a single compressed mouse movement event that
represents a number of smaller movements —  the compressed event contains a count of the
number of uncompressed movements it represents [Scheifler and Gettys 1986].

Examples
The following Java example compresses a sequence of two-byte values into a sequence of bytes
using both difference compression and run length encoding.   The compression is lossless, and
the only escape sequence contains both the complete value and the sequence length.  As above,
the bytes of the escape sequence are:

<escape> <high byte of repeated value> <low byte> <sequence count>

The encodeSequence method takes a sequence of shorts, and passes each one to the
encodeShort method, which will actually encode them:

    protected final int SequenceEscape =  0xff;
    protected final int MaxSequenceLength =  0xFE;
    protected short lastShort;
    protected short runLength;

    protected void encodeSequence(short[] inputSequence) {
        lastShort = 0;
        runLength = 0;

        for (int i = 0; i < inputSequence.length; i++) {
            encodeShort(inputSequence[i]);
        }
        flushSequence();

    }

The encodeShort method does most of the work.  It first checks if its argument is part of a
sequence of identical values, and if so, simply increases the run length count for the sequence —
if the sequence is now the maximum length that can be represented, an escape code is written.
If its argument is within the range of the delta coding (± 128 from the last value) an escape code
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is written if necessary, and a delta code is written.  Finally, if the argument is outside the range,
an escape code is written to terminate the current run length encoded sequence if necessary. In
any event, the current argument is remembered in the lastShort variable.

protected void encodeShort(short s) {
        if (s == lastShort) {
            runLength++;
            if (runLength >= MaxSequenceLength) {
                flushSequence();
            }
        } else if (Math.abs(s - lastShort) < 128 ) {
            flushSequence();
            writeEncodedByte(s - lastShort + 128);
        } else {
            flushSequence();
            runLength++;
        }
        lastShort = s;
}

The flushSequence method simply writes out the escape codes, if required, and resets the run
length.  It is called whenever a sequence may need to be written out —  whenever encodeShort
detects the end of the current sequence, or that the current sequence the longest that can be
represented by the run length escape code.

    protected void flushSequence() {
        if (runLength == 0) return;
        writeEncodedByte(SequenceEscape);
        writeEncodedByte(lastShort >>> 8);
        writeEncodedByte(lastShort & 0xff);
        writeEncodedByte(runLength);
        runLength = 0;
}

The corresponding decoding functions are straightforward. If an escape code is read, a run of
output values is written, and if a delta code is read, a single output is written which differs from
the last output value by the delta.

protected void decodeSequence(byte[] inBuffer) {
        ByteArrayInputStream inStream =
            new ByteArrayInputStream(inBuffer);
        lastShort = 0;
        int byteRead;

        while ((byteRead = inStream.read()) != -1) {
            byteRead = byteRead & 0xff;

            if (byteRead == SequenceEscape) {
                lastShort = (short) (((inStream.read() &0xff ) << 8) +
                                     (inStream.read() & 0xff));
                for (int c = inStream.read(); c > 0; c--) {
                    writeDecodedShort(lastShort);
                }
            } else {
                writeDecodedShort(lastShort += byteRead -128);
            }
        }
    }

v v v

Known Uses
Many image compression techniques use Different Compression.  The TIFF image file format
uses RLE to encode runs of identical pixels [Adobe 1992. The GIF and PNG formats do the
same after (lossy) colour mapping [CompuServe 1987, Boutell 1996].  The Group 3 and 4 Fax
transmission protocols uses RLE to encode the pixels on a line  [Gonzalez and Woods 1992];
the next line (in fine mode) or three lines (in standard mode) are encoded as differences from the
first line.
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MPEG video compression uses a variety of techniques to express each picture as a set of
differences from the previous one [MPEG, Kinnear 1999]. The V.42bis modem compression
standard includes RLE and TABLE COMPRESSION (Huffman Coding), achieving a total
compression ratio of up to 33% [Held 1994].

Many window systems in addition to X use Run Length encoding to compress events.  For
example MS Windows represents multiple mouse movements and key auto-repeats in this way,
and EPOC’s Window Server does the same [Petzold 1998, Symbian 1999].

Reuters IDN system broadcasts the financial prices from virtually every financial exchange and
bank in the world, aiming – and almost always succeeding – in transmitting every update to
every interested subscriber in under a second.  To make this possible, IDN represents each
‘instrument’ as a logical data structure identified by a unique name (Reuters Identification
Code); when the contents of the instrument (prices, trading volume etc.) change, IDN transmits
only the changes.  To save expensive satellite bandwidth further, these changes are transmitted
in binary form using Huffman Coding (see TABLE COMPRESSION), and to ensure synchronisation
of all the Reuters systems worldwide, the system also transmits a  background ‘refresh’ stream
of the complete state of every instrument.

See Also
You may want to use TABLE COMPRESSION in addition to, or instead of DIFFERENCE CODING.  If
you have a large amount of data, you may be able to tailor your compression parameters
(ADAPTIVE COMPRESSION), or to use a more powerful ADAPTIVE algorithm.

The references discussed in the previous patterns are equally helpful on the subject of
DIFFERENCE COMPRESSION.  Witten, Moffat and Bell [1999] explain image compression
techniques and tradeoffs; Cyganski, Orr, and Vaz [1998] and Solari [1997] explain audio,
graphical and video compression techniques, and Held [1994] discusses modem compression.

______________________________
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Adaptive Compression Pattern
How can you reduce the memory needed to store a large amount of bulk data?

• You have a large amount of data to store, transmit or receive.

• You don’t have enough persistent memory space to store the information long term, or
you need to communicate the data across a slow telecommunications link

• You have transient memory space for processing the data.

• You don’t need random access to the data

A high proportion of the memory requirements of many programs is devoted to bulk data.  For
example, the latest application planned for the Strap-It-On PC is ThemePark:UK, a tourist
guide being produce in conjunction with the Unfriendly Asteroid travel consultancy.
ThemePark:UK is based on existing ThemePark products, which guide users around theme
parks in Southern California.  ThemePark:UK will treat the whole of the UK as a single theme
park; the Strap-It-On will use its Global Positioning System together an internal database to
present interactive travel guides containing videos, music, voice-overs, and genuine people
personalities for cute interactive cartoon characters.  Unfortunately the UK is a little larger than
most theme parks, and the designers have found that using TABLE COMPRESSION and
DIFFERENCE COMPRESSION together cannot cram enough information into the Strap-It-On’s
memory.

This kind of problem is common in applications requiring very large amounts of data, whether
collections of documents and emails or representations of books and multimedia Even if systems
have sufficient main memory to be able to process or display the parts of the data they need at
any given time, they may not have enough memory to store all the information they will ever
need, either in main memory or secondary storage.

Therefore: Use an adaptive compression algorithm.

Adaptive compression algorithms can analyse the data they are compressing and modify their
behaviour accordingly.  These adaptive compression algorithms can provide high compression
ratios, and work in several ways:

• Many compression mechanisms require parameters, such as the table required for table
compression or the parameters to decide what data to discard with lossy forms of
compression.  An adaptive algorithm can analyse the data it’s about to compress, choose
parameters accordingly, and store the parameters at the start of the compressed data.

• Other adaptive techniques adjust their parameters on the fly, according to the data
compressed so far.  For example Move-to-front (or MTF) transformations change the table
used in, say Nibble Compression, so that the table of codes translating to the minimum (4-
bit) representation is always the set of most recently seen characters.

• Further techniques, predominantly the Lempel-Ziv family of algorithms, use the stream of
data already encoded as a string table to provide a compact encoding for each string newly
received.

Implementations of many adaptive compression algorithms are available publicly, either as free
or open source software, or from commercial providers.

For example, ThemePark:UK uses the gzip adaptive file compression algorithm for its text
pages, which achieves typical compressions of 2.5 bits per character for English text, and
requires fairly small amounts of RAM memory for decoding.  ThemePark:UK also uses JPEG
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compression for its images, PNG compression for its maps and cartoons, and MP3 compression
for sounds.

Consequences
Modern adaptive compression algorithms provide excellent compression ratios, reducing your
memory requirements.  They are widely used and are incorporated into popular industry
standards for bulk data.

Adaptive compression can also reduce data transmission times for telecommunication. File
compression can also reduce the secondary storage requirements or data transmission times
for program code.

However: File compression can require a significant processing time to compress and decompress large
bulk data sets, and so they are generally unsuitable for real-time work.  Some temporary
memory (primary and secondary storage) will be necessary to store the decompressed results
and to hold intermediate structures.

The performance of compression algorithms can vary depending on the type of data being
compressed, so you have to select your algorithm carefully, requiring programmer effort.  If
you cannot reuse an existing implementation you will need significant further programmer
effort to code up one of these algorithms, because they can be quite complex.  Some of the most
important algorithms are patented, although you may able to use non-patented alternatives.

v v v

Implementation
Designing efficient and effective adaptive compression algorithms is a very specialised task,
especially as the compression algorithms must be tailored to the type of data being compressed.
For most practical uses, however, you do not need to design you own text compression
algorithms, as libraries of compression algorithms are available both commercially and under
various open source licences.  Sun’s Java, for example, now officially includes a version of the
zlib compression library, implementing the same compression algorithm as the pkzip and gzip
compression utilities.  In most programs, compressing and decompressing files or blocks of data
is as simple as calling the appropriate routine from one of these libraries.

1.  LZ Compression

Many of the most effective compression schemes are variants of a technique devised by Zip and
Lempel [1977].  Lempel-Ziv (LZ77) compression uses the data already encoded as a table to
allow a compact representation of following data.  LZ compression is easy to implement; and
decoding is fast and requires little extra temporary memory.

LZ77 works by encoding sequences of tuples.  In each tuple, the first two items reference a
string previously coded – as an offset from the current position, and a length.  The third item is
a single character.  If there’s no suitable string previously coded, the first two items are zero.
For example, the following shows the LZ77 encoding of the song chorus “do do ron ron ron do
do ron ron”.
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d o • do•r on •ron•ron• do•do•ron•ron
Uncompressed sequence

Compressed representation
0 0 d 0 0 o 0 0 • 3 3 r 3 1 n 4 8 • 18 13  .

• = space character.

Figure 8: LZ77 Compression

Note how the repeating sequence “ ron ron” is encoded as a single tuple; this works fine for
decompression and requires only a small amount of extra effort in the compression code.

There are many variants of LZ compression, adding other forms of compression to the output,
or tailored for fast or low-memory compression or decompression.  For example GZIP encodes
blocks of 64Kb at a time, and uses Huffman Coding to compress the offset and length fields of
each tuple still further.

Examples
We examine two examples of adaptive compression.  The first, MTF compression, is a simple
adaptive extension of Table Compression.  The second, more typical of real-world applications,
simply uses a library to do compression and decompression for us.

1.  MTF Compression

Move-To-Front (MTF) compression can adapt Nibble Compression to the data being encoded,
by changing the compression table dynamically so that it always contains the 15 most recently
used characters [Bell et al 1990].   The following code shows only the significant changes from
the Nibble Coding example in TABLE COMPRESSION.

First, we need a modifiable version of the table.   As with the fixed version, it can be a simple
string.

protected String NibbleChars = " etoasrinclmhdu";

To start off, we set the table to be a best guess,  so both the encodeString and decodeString
methods start by resetting currentChars to the value NibbleChars (not shown here).  Then
we simply need to modify the table after encoding each character, by calling the new method
updateCurrent in encodeChar:

protected void encodeChar(int charCode) {
        int possibleNibble = NibbleChars.indexOf(charCode);
        if (possibleNibble != -1) {
            putNibble(possibleNibble);
        } else {
            putNibble(NibbleEscape);
            putNibble(charCode >>> 4);
            putNibble(charCode & 0xf);
        }
        updateCurrent((char) charCode);
    }

The updateCurrent method updates the current table, either by moving the current character
to the front of the table.  If that character is already in the table, it gets pushed to the front; if
not, then the last (least recently used) character is discarded:
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protected void updateCurrent(int c)
    {
        int position = NibbleChars.indexOf(c);
        if (position != -1) {
            NibbleChars = "" + c + NibbleChars.substring(0, position) +
                NibbleChars.substring(position+1);
        } else {
            position = NibbleChars.length() - 1;
            NibbleChars = "" + c + NibbleChars.substring(0, position);
        }
    }

The decodeChar needs to do the same update for each character decoded:
    protected int decodeChar() {
        int result;
        int nibble = getNibble();
        if (nibble == -1) {
            return -1;
        }
        if (nibble != NibbleEscape) {
            result = NibbleChars.charAt(nibble);
        } else {
            nibble = getNibble();
            if (nibble == -1) {
                return -1;
            }
            result = (nibble << 4) + getNibble();
        }
        updateCurrent(result);
        return result;
    }

This example doesn’t achieve as much compression as the fixed table for typical English text;
for the text of this chapter it achieves only 6.2 bits per character.  The MTF version does
achieve some degree of compression on almost any non-random form of text, however,
including executable binaries.

2.  ZLIB Compression

This example uses an existing compression library, and so is more typical of real-world
applications of adaptive compression.  The Java Zlib libraries provide compressing streams that
are DECORATORS of existing streams [Gamma et al 1995, Chan, Lee and Kramer 1998].  This
makes it easy to compress any data that can be implemented as a stream.  To compress some
data, we open a stream on that data, and pass it through a compressing stream and then to an
output stream.

protected static byte[] encodeSequence(byte[] inputSequence)
            throws IOException {
        InputStream inputStream = new ByteArrayInputStream(inputSequence);
        ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
        GZIPOutputStream out = new GZIPOutputStream(outputStream);

        byte[] buf = new byte[1024];
        int len;
        while ((len = inputStream.read(buf)) > 0) {
            out.write(buf, 0, len);
        }
        out.close();
        return outputStream.toByteArray();
    }

In this model, decompressing is much like compressing.  This time, the compressing stream is
on the reading side; but in all other respects the code is virtually the same.
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protected static byte [] decodeSequence(byte [] s) throws IOException {
        GZIPInputStream inputStream =
            new GZIPInputStream(new ByteArrayInputStream(s));
        ByteArrayOutputStream outputStream =
            new ByteArrayOutputStream();

        byte[] buf = new byte[1024];
        int len;
        while ((len = inputStream.read(buf)) > 0) {
            outputStream.write(buf, 0, len);
        }
        outputStream.close();
        return outputStream.toByteArray();
}

v v v

Known Uses
Lempel-Ziv and variant compression algorithms are an industry standard, evidenced by the
many PKZip and gzip file compression utilities used to reduce the size of email attachments, or
to archive little-used or old versions of files and directories [Ziv and Lempel 1977, Deutsch
1996].

The PDF format for device-independent images uses LZ compression to reduce its file sizes
[Adobe 1999] .  Each PDF file contains one or more streams, each of which may be compressed
with LZ.

File compression is also used architecturally in many systems. Linux kernels can be stored
compressed and are decompressed when the system boots, and Windows NT supports optional
file compression for each disk volume [Ward 1999, Microsoft NT 1996].  Java’s JAR format
uses gzip compression [Chan et al 1998] although designing alternative class file formats
specially to be compressed can give two to five times better compression than gzip applied to
the standard class file format [Horspool and Corless 1998, Pugh 1999]. Some backup tape
formats use compression, notably the Zip and Jaz drives, and the HTTP protocol allows any
web server to compress data, though as far as we are aware this feature is little used [Fielding
1999].

The current state-of-the-art library for adaptive file compression, Bzip2, achieves typical
compressions of 2.3 bits per character on English text by transforming the text data before
using LZ compression [Burroughs Wheeler 1994].  BZip2 requires a couple of Mbytes of RAM
to compress effectively.  See Witten et al [1999] and BZip2’s home page [BZip2] for more
detail.

See Also
TABLE COMPRESSION and DIFFERENCE CODING are often used with, or as part of, adaptive
compression algorithms.  You may also need to read a file a bit at a time (DATA FILES) to
compress it.

Text Compression  [Bell et al 1990] and Managing Gigabytes [Witten et al 1999] describe and
analyse many forms of adaptive compression, including LZ compression, arithmetic coding and
many others.

 ______________________________


