
Major Technique: Secondary Storage UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 1

 Major Technique: Secondary Storage
Version 11/06/00 20:19 - 9

What can you do when you have run out of primary storage?

• Your memory requirements are larger than the available primary storage.

• You cannot reduce the system's memory requirements sufficiently.

• You can attach secondary storage to the device executing the system.

Sometimes your system’s primary memory is just not big enough to fulfil your program’s
memory requirements.

For example, the Word-O-Matic™ word-processor for the Strap-It-On™ needs to be able to
let users edit large amounts of text. Word-O-Matic also supports formatting text for display or
printing, not to mention spelling checks, grammar checks, voice output, mail merging and the
special StoryDone feature to write the endings for short stories. Unfortunately, the Strap-It-On
has only 2Mb of RAM. How can the programmers even consider implementing Word-O-Matic
when its code alone will occupy most of the memory space?

The are a number of other techniques in this book which can reduce a program’s memory
requirements. COMPRESSION can store the information in a smaller amount of memory. Testing
applications under a memory limit will ensure programs fit well into a small memory space.
You can reduce the system functionality by deleting features or reducing their quality. In many
cases, however, these techniques will not reduce the program’s memory requirements
sufficiently: data that has to be accessed randomly is difficult to compress; programs have to
provide the features and quality expected by the marketplace.

Yet for most applications there is usually some hope. Even in small systems, the amount of
memory a program requires to make progress at any given time is usually a small fraction of
the total amount of memory used. So the problem is not where to store the code and data
needed by the program at any given moment; rather, the problem is where to store the rest of
the code and data that may, or may not, be needed by the program in the future.

Therefore: Use secondary storage as extra memory at runtime.

Most systems have some form of reasonably fast secondary storage. Secondary storage is
distinct from RAM, since the processor can’t write to each individual memory addresses
directly; but it’s easy for applications to access secondary storage without user intervention.
Most forms of secondary storage support file systems such that the data lives in files with text
names and directory structures. Typically each file also supports random access to its data
(“get me the byte at offset 301 from the start of the file”).

If you can divide up your program and data into suitable pieces you can load into main
memory only those pieces of code and data that you need at any given time, keeping the rest of
the program on secondary storage. When the pieces of the program currently in main memory
are no longer required you can somehow replace them with more relevant pieces from the
secondary store.

There are many different kinds of secondary storage that can be modified and can be accessed
randomly: Floppy Disks, Hard Disks, Flash filing systems, Bubble Memory cards, CD-ROM
drives, writable CD ROM file systems, and gargantuan file servers accessed over a network.
Palm Pilot systems use persistent ‘Memory Records’ stored in secondary RAM. Other forms
of secondary storage provide only sequential or read-only access: tape, CD-ROM and web
pages accessed over the Internet.

Major Technique: Secondary Storage UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 2

For example the Strap-It-On comes with a CyberStrap, which includes a 32Mb bubble memory
store built into its strap along with interfaces for wrist-mounted disk drives. So the Word-O-
Matic developers can rely on plenty of ‘disk’ to store data. Thus Word-O-Matic consists of
several separate executables for APPLICATION SWITCHING; it stores each unused document in a
DATA FILE; dictionaries, grammar rules and skeleton story endings exist as RESOURCE FILES;
optional features are generally shipped as PACKAGES; and the most complex operations use
object PAGING to make it seem that the RAM available is much larger than in reality.

Consequences
Being able to use SECONDARY STORAGE can be like getting a lot of extra memory for free — it
greatly reduces your program’s primary memory requirements.

However: the secondary storage must be managed, and information transferred between
primary and secondary storage. This management has a time performance cost, and may also
cost programmer effort and programmer discipline, impose local restrictions to support
global mechanisms, require hardware or operating system support, and reduce the program’s
usability. Most forms of secondary storage require additional devices, increasing the system’s
power consumption.

v v v

Implementation
There are a few key issues you must address to use secondary storage effectively:

• What is divided up: code, data, configuration information or some combination?
• Who does the division: the programmer, the system or the user?
• Who invokes the loading and unloading: the programmer, the system or the user?
• When does loading or unloading happen?

Generally, the more the program is subdivided and the finer the subdivision, the less the
program depends on main memory, and the more use the program makes of secondary storage.
Coarser divisions, perhaps addressing only code or only data, may require more main memory
but place less pressure on the secondary storage resources.

Making programmers subdivide the program manually requires more effort than somehow
allowing the system, or the user, to subdivide the program; and a finer subdivision will require
more effort than a coarser one. As a result very fine subdivisions are generally only possible
when the system provides them automatically; but creating an automatic system requires
significant effort. Making the user divide up the program or data imposes little cost for
programmers, but reduces the usability of the system.

There are similar trade-offs in deciding who controls the loading and unloading of the divisions.
If the system does it automatically this saves work for everyone except the system-builders;
otherwise the costs fall on the user and programmer. Sequential loading and unloading is the
simplest to implement (and often the worst for the user). More complex schemes that load and
unload code or data on demand can be much more seamless to the user, and can even make the
reliance on secondary storage transparent to both users and programmers.

v v v

Specialised Patterns
The rest of this chapter contains five specialised patterns describing different ways to use
secondary storage. Figure 1 shows the patterns and the relationships between them: arrows
show close relationships; springs indicate a tension between the patterns.

Major Technique: Secondary Storage UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 3

Secondary
Storage

Packages

Application
Switching Data Files

Storing Code Storing Data

Compression

Memory
Discard

Reference
Counting

Read-only
Memory

Resource FilesPaging

Figure 1: Secondary Storage Patterns

The patterns also form a sequence starting with simple patterns which can be implemented
locally, relying only upon programmer discipline for correct implementation, and finishing with
more complex patterns which require hardware or operating system support but require much
less, if any, programmer discipline. Each pattern occupies a different place in the design
space defined by the questions above, as follows:

APPLICATION SWITCHING requires the programmer to divide up the program into independent
executables, only one of which runs at a time. The order in which the executables run
can be determined by the executables themselves, by an external script, or by the user.

DATA FILES uses secondary storage as a location for inactive program data. These files may or
may not be visible to the user.

RESOURCE FILES store static read-only data. When the program needs a resource (such as a font,
an error message, or a window description), it loads the resource from file into
temporary memory; afterwards it releases this memory.

PACKAGES store chunks of the program code. The programmer divides the code into packages,
which are loaded and unloaded as required at runtime.

PAGING arbitrarily breaks the program down into very fine units (pages) which are shuffled
automatically between primary and secondary storage. Paging can handle code and
data, support read-only and shared information between different programs, and is
transparent to most programmers and users.

All of these patterns in some sense trade facilities provided in the environment for work done
by the programmer. The more complex the environment (compilation tools and runtime
system), the less memory management work for the programmer; however a complex run-time
environment takes both effort to develop, and has its own memory requirements at run-time.
Figure 3 shows where each pattern fits in this scheme.

Major Technique: Secondary Storage UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 4

E
nv

iro
nm

en
t C

om
pl

ex
ity

Programmer Effort

Program
Chaining

Data
Files

Resource
Files

Paging

Packages

Figure 3: Implementation Effort vs. Environmental Complexity

See Also
READ-ONLY pieces of program or data can be deleted from memory without having to be saved
back to secondary storage.

You can use COMPRESSION to reduce the amount of space taken on secondary storage.

Secondary Storage management is one of the primary functions of modern operating systems.
More background information and detail on techniques for using Secondary Storage can be
found in many operating systems textbooks [Tannenbaum 1992, Leffler, McKusik, Karels and
Quarterman 1989, Goodheart and Cox 1994].

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 5

Application Switching
How can you reduce the memory requirements of a system that provides many different functions?

Also known as: Phases, Program Chaining, Command Scripts.

• Systems are too big for all the code and data to fit into main memory

• Users often need to do only one task at a time

• A single task requires only its own code and data to execute; other code and data can
live on secondary storage.

• It’s easier to program only one set of related tasks – one application – at a time.

Some systems are big – too big for all of the executable code and data to fit into main memory
at the same time.

For example a Strap-It-On user may do word-processing, run a spreadsheet, read Web pages,
do accounts, manage a database, play a game, or use the ‘StrapMan’ remote control facilities
to manage the daily strategy of a large telecommunications network. How can the
programmers make all this functionality work in the 2 Mb of RAM they have available –
particularly as each of the StrapMan’s five different functions requires 1Mb of code and 0.5
Mb of temporary RAM data?

Most systems only need a small subset of their functionality – enough to support one user task
– at any given time. Much of the code and data in most systems is unused much of the time,
but all the while it occupies valuable main memory space.

The more complex the system and the bigger the development team, the more difficult
development becomes. Software developers have always preferred to split their systems
architecture into separate components, and to reduce the interdependencies between these
components. Components certainly make system development manageable, but they do not
reduce main memory requirements.

Therefore: Split your system into independent executables, and run only one at a time.

Most operating systems support independent program components in the form of executable
files on secondary storage. A running executable is called a process and its code and data
occupies main memory. When a process terminates, all the main memory it uses is returned to
the system.

Design the system so that behaviour the user will use together or in quick succession will be in
the same executable. Provide facilities to start another executable when required, terminating
the current one. The new process can reuse all the memory released by the terminated process.

In many operating systems this is the only approach supported; only one process may execute
at a time. In MS-DOS the executable must provide functionality to terminate itself before
another executable can run; in MacOS and PalmOs there is control functionality shared by all
applications to support choosing another application and switching to it. [Chappell 1994,
Apple 1985, Palm 2000]. In multi-tasking operating systems this pattern is still frequently
used to reduce main memory requirements.

For example, no Strap-It-On user would want to do more than one of those tasks at any one
time; it’s just not physically possible given the small size of the screen. So each goes in a
separate executable (word-processor, spreadsheet, web browser, accounting, database, Doom),
and the Strap-It-On provides a control dialog that allows the user to terminate the current
application and start another. Each application saves its state on exit and restores it on restart,

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 6

so that – apart from the speed of loading – the user has no way of telling the application has
terminated and restarted. The StrapMan application, however, wouldn’t fit in RAM as a single
executable. So the StrapMan’s authors split it into six different executables (one for the main
program and one for each function), and made the main one ‘chain’ to each other executable as
required.

Consequences
The memory requirements for each process are less than the memory requirements for the
entire system. The operating system reclaims the memory when the process terminates, so this
reduces programmer effort managing memory and reduces the effects of ‘memory leaks’.

Different executables may be in different implementation languages, and be an interpreted or
compiled as required. Some executables may also be existing ‘legacy’ applications, or utilities
provided by the operating system. So APPLICATION SWITCHING may significantly reduce the
programmer effort to produce the system, encouraging reuse and making maintenance easier.
Script-based approaches can be very flexible, as scripts are typically very easy to modify.
Also applications tend to be geared to stopping and starting regularly, so errors that terminate
applications may not be so problematic to the user, increasing the system’s robustness.

In single-process environments, such as PalmOs, each process occupies the same memory
space, so the amount of memory required is easy to predict, which improves reliability, makes
testing easier and removes the effects of the global memory use on each local application.
You only need to start the first process to get the system running, reducing start-up times. It’s
also easy to know what’s happening in a single-process environment, simplifying real-time
programming.

However: Dividing a large program into a good set of processes can be difficult, so a multi-process
application can require significant programmer effort to design, and local complexity in the
implementation.

If you have many executables, the cost of starting each and of transferring data can dominate
the system’s run time performance; this is also a problem if the control flow between different
processes is complex — if processes are started and terminated frequently.

In single-process environments the user can use only the functionality in the current executable,
so chaining tends to reduce the system’s usability. If the user has to manage the processes
explicitly, that also reduces the program’s usability.

This pattern does not support background activities, such as TCP/IP protocols, interfacing to a
mobile phone, or background downloading of email. Such activities must continue even when
the user switches tasks. The code for background tasks must either be omitted (reducing
usability), live in a separate process (increasing programmer effort), or be implemented using
interrupt routing (requiring large amounts of specialised programmer effort).

v v v

Implementation
To implement Application Switching you have to divide up the system into separate
components (see the SMALL ARCHITECTURE pattern). Communication between running processes
can be difficult, so in general the split must satisfy these rules:

• The control flow between processes is simple

• There is little transient data passed between the processes.

• The division makes some kind of sense to the user.

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 7

Figure 3 shows the two main alternatives that you can use to implement process switching:

Phase 2

Phase 3

Then
invokes

Invokes

Phase 1

Phase 2

Phase 3

Phase 1

Then
invokes

Invokes

Master
Program

Then
invokes

Simple Phases Phases using a Script
T

im
e

Figure 5: Two different approaches to implementing Phases

1. Program Chaining.

One process can pass control explicitly to the following process. This is called ‘program
chaining’, after the ‘CHAIN’ command in some versions of the BASIC programming language
[Digital 1975; Steiner 1984]. Program Chaining requires that each executable to know which
executable to go to next. This can be programmed explicitly by each application, or as part of
an application framework library. Given such an application framework, each executable can
use the framework to determine which application to switch to next, and to switch to that
application, without requiring much programmer effort. The MacOs (task switcher) and
PalmOs application frameworks do this [Apple 1984, Palm 2000].

2. Master Program.

Alternatively, a script or top-level command program can invoke each application in turn. A
master program, by contrast, encourages reuse because each executable doesn't need to know
much about its context and can be used independently. The UNIX environment pioneered the
idea of small interoperable tools designed to work together in this way [Kernighan and Pike
1984]. Even with a master program, the terminating program can help determine which

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 8

application to execute next by passing information back to the master program using exit
codes, or by producing output or temporary files that are read by the master program.

3. Communicating between Processes.

How can separate components communicate when only one process is active at a time? You
can’t use main memory, because that is erased when each process terminates. Instead you need
to use one or more of the following mechanisms:

• Command line parameters and environment variables passed into the new process.

• Secondary storage files, records or databases written by one process and read by
another.

• Environment-specific mechanisms. For example, many varieties of Basic complimented
the CHAIN command with a COMMON keyword that specifies data preserved when a new
process overwrites the current one [Steiner 1984].

4. Managing Data.

How do you make it seem to the user that an application never terminates, even when it is split
up in separate processes? Many environments only support a small number of processes,
maybe just one, but users don’t want to have to recreate all their state each time they start up a
new application. They want the illusion that the application is always running in the
background.

The solution is for the application to save an application’s state to SECONDARY STORAGE on exit,
and to restore this state when the application’s restarted. Many OO libraries and environments
support ways of ‘streaming’ all the important objects – data and state – as a single operation.
The approach requires a binary ‘file stream’, which defines stream functions to read and write
primitive types (e.g. int, char, float, string). Each class representing the application’s state then
defines its own streaming functions.

When you are streaming out object-oriented applications, you need to ensure each object is
streamed only once, no matter how many references there may be to it. A good way to deal
with this is to have the ‘file stream’ maintain a table of object identifiers. Each time the stream
receives a request to stream out an object it searches this table, and if it finds the object already
there, it just saves a reference to the file location of the original instead of saving it again.

The Java libraries support persistence through the Serialization framework [Chan et al 1998].
Any persistent class implements the Serializable interface; it needs no other code – the
runtime environment can serialize all its data members, following object references as required
(and writing each object only once, as above). The classes ObjectOutputStream and
ObjectInputStream provide methods to read and write a structure of objects: writeObject
and readObject respectively. By convention the files created usually have the extension
‘.ser’; some applications ship initial ‘.ser’ files with the Java code in the JAR archive.

Examples
Here’s a very trivial example from an MS Windows 3.1 system. We cannot use the disk-
checking program, scandisk, while MS Windows is running, so we chain it first, then run
Windows:

@REM AUTOEXEC.BAT Command file to start MS Windows 3.1 from DOS
@REM [Commands to set paths and load device drivers omitted]
C:\WINDOWS\COMMAND\scandisk /autofix /nosummary
win

The following Java routine chains to a different process, terminating the current process:

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 9

 void ChainToCommand(String theCommand) throws IOException {
 Runtime.getRuntime().exec(theCommand);
 Runtime.getRuntime().exit(0);
 }

Note that if this routine is used to execute another Java application, it will create a new Java
virtual machine before terminating the current one, and the two VMs will coexist temporarily,
requiring significant amounts of memory.

The Unix exec family of functions is more suitable for single process chaining in low memory;
each starts a new process in the space of the existing one [Kernighan and Pike 1984]. The
following C++ function uses Microsoft C++’s _execl variant [Microsoft 1997]. It also uses
the Windows environment variable ‘COMSPEC’ to locate a command interpreter, since only the
command interpreter knows where to locate executables and how to parse the command line
correctly.

void ChainToCommand(string command)
{

const char *args[4];
args[0] = getenv("comspec");
args[1] = "/c";
args[2] = command.c_str();
args[3] = 0;
_execv(args[0], args);

}

The function never returns. Note that although all the RAM memory is discarded, execl
doesn’t close file handles, which remain open in the chained process. See your C++ or library
documentation for ‘execl’ and the related functions.

The following is some EPOC C++ code implementing streaming for a simple class, to save
data to files while the application is switched. The class, TSerialPortConfiguration,
represents configuration settings for a printer port. Most of its data members are either C++
enum’s with a small range of values, or one-byte integers (char in C++, TInt8 in EPOC
C++); TOutputHandshake is a separate class:

class TSerialPortConfiguration {
 // Various function declarations omitted…

TBps iDataRate;
TDataBits iDataBits;
TStopBits iStopBits;
TParity iParity;
TOutputHandshake iHandshake;
};

The functions InternalizeL and ExternalizeL read and write the object from a stream.
Although the values iDataRate are represented internally as 4-byte integers and enums, we
know we’ll not loose information by storing them as PACKED DATA, in a single byte. The class
TOutputHandshake provides its own streaming functions, so we use them:

EXPORT_C void TSerialPortConfiguration::InternalizeL(RReadStream& aStream)
{
iDataRate = (TBps) aStream.ReadInt8L();
iDataBits = (TDataBits) aStream.ReadInt8L();
iStopBits = (TStopBits) aStream.ReadInt8L();
iParity = (TParity) aStream.ReadInt8L();
iHandshake.InternalizeL(aStream);
}

EXPORT_C void TSerialPortConfiguration::ExternalizeL(RWriteStream& aStream) const
{
aStream.WriteInt8L(iDataRate);
aStream.WriteInt8L(iDataBits);
aStream.WriteInt8L(iStopBits);
aStream.WriteInt8L(iParity);
iHandshake.ExternalizeL(aStream);
}

Application Switching UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 10

v v v

Known Uses
The PalmOs and early versions of the MacOs environments both support only a single user
process at any one time; both provide and framework functions to simulate multi-tasking for
the user. MacOs uses persistence while PalmOs uses secondary storage ‘memory records’ to
save application data [Apple 1985, Palm 2000].

The UNIX environment encourages programmers to use processes by supporting scripts and
making them executable in the same way as binary executables, with any suitable scripting
engine [Kernighan and Pike 1984]. In Windows and the DOS environments, the only fully-
supported script formats are the fairly simple BAT and CMD formats, although it’s trivial to
create a simple Windows BAT file to invoke more powerful scripting language such as Tcl
[Ousterhout 1994] and Perl [Wall 1996].

The Unix Make utility manages application switching (and the DATA FILES required) to compile
a program, generally running any preprocessors and the appropriate compiler process for each
input file in turn, then running one or more linker processes to produce a complete executable
[Kernighan and Pike 1984].

See Also
PACKAGES provide similar functionality within a single process – by delaying code loading until
it’s required. However whereas in PROCESS SWITCHING the operating system will discard the
memory, code and other resources owned by a task when the task completes, a PACKAGE must
explicitly release these resources.

PAGING provides much more flexible handling of both code and data.

The executables can be stored on SECONDARY STORAGE, using COMPRESSION.

The MEMORY DISCARD pattern has a similar dynamic to this pattern but on a much smaller
scale. Where APPLICATION SWITCHING recovers all the memory occupied by an process only
when it terminates, MEMORY DISCARD allows an application to recover the memory occupied by
a group of objects in the middle of its execution.

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 11

Data File Pattern
What can you do when your data doesn’t fit into main memory?

Also known as: Batch Processing, Filter, Temporary File

• Systems are too big for all the code and data to fit into RAM together

• The code by itself fits into RAM (or can be fitted using other patterns)

• The data doesn’t fit into RAM

• Access to the data is sequential.

Sometimes programs themselves are quite small, but need to process a large amount of data —
the memory requirements mean that the program will fit into main memory, but the data
requires too much memory.

For example, the input and output data for the Word-O-Matic Text Formatter can exceed the
capacity of the Strap-It-On’s main memory when formatting a large book. How should the
Word-O-Matic designers implement the program to produce the output PostScript data, let
alone to produce all the index files and update all the cross references, when it’s physically
impossible to get them all into RAM memory?

Dividing the program up into smaller phases (as in APPLICATION SWITCHING) can reduce the
memory required by the program itself, but this doesn’t help reduce the memory requirements
for the input and output. Similarly, COMPRESSION techniques may reduce the amount of
secondary storage required to hold the data, but don’t reduce the amount of main memory need
to process it.

Yet most systems don’t need you to keep all data in RAM. Modern operating systems make it
simple to read and write from files on Secondary Storage. And the majority of processing
tasks do not require simultaneous access to all the data.

Therefore: Process the data a little at a time and keep the rest on secondary storage.

Use sequential or random file access to read each item to process; write the processed data
sequentially back to one or more files. You can also write temporary items to secondary
storage until you’re ready to use them. If you are careful, the amount of main memory needed
for processing each portion will be much less than the total memory that would be required to
process all the data in main memory. You need to be able to store both input and output as
files in SECONDARY STORAGE, so the input and output data must be partitioned cleanly.

For example Word-O-Matic stores its chapters as separate text files. The Word-O-Matic Text
Formatter (nicknamed the ‘Wombat’) makes several passes over these files, see Figure XXX.
The first pass scans all the chapter files in turn, locating the destinations of cross references
and index entries in the file data, and writes all the information it needs to create each cross-
reference to a temporary ‘cross reference’ file. Wombat’s second pass then scans the cross-
reference file to create an in-memory index to this file, then reads each chapter file, creating a
transient version with the cross references and indexes included. It reads the cross-reference
data by random access to the index file using the in-memory index. Since the page numbering
changes as a result of the updates, Wombat also keeps an in-memory table showing how each
reference destination has moved during this update. Finally Wombat’s third pass reads each
transient chapter file a bit at a time, and writes out the PostScript printout sequentially, making
the corrections to the page numbers in the index and references using its in-memory table as it
does. Using these techniques Wombat can format an entire book using as little as 50Kb of
RAM memory.

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 12

Cross
reference

file
(temporary)

Chapter 2
(temporary)

Chapter 1
(temporary)

Postscript
output

1

1

2

2 2
3

3

Chapter 2

Chapter 1

Figure 6: Wombat’s Data Files and Phases

Consequences
The memory requirements for processing data piecemeal are reduced, since most of the data
lives on secondary storage. The system’s main memory requirements are also much more
predictable, because you can allocate a fixed memory to support the processing, rather than a
variable amount of memory to store a variable amount of data.

You can examine the input and output of functions in an application using utilities to look at
the secondary storage files, which makes testing easier. Data Files also make it easy to split an
application into different independent components linked only by their data files, reducing the
global impact of local changes, and making maintenance easier. Indeed Data Files also make
it much easier to implement phases, allowing APPLICATION SWITCHING; for example, Wombat’s
phase 1 is in a different executable from phases 2 and 3.

However: Programmer effort is required to design the program so that the data can be processed
independently. Processing data incrementally adds local complexity to the implementation,
which you could have avoided by processing the data globally in one piece. If you need to keep
extra context information to process the data, then managing this information can add global
complexity to the program.

Data chaining can provide slower run-time performance than processing all the input in one
piece, since reading and writing many small data items is typically less efficient than reading or
writing one large item. Repeated access to secondary storage devices can increase the system’s
power consumption, and can even reduce the lifetime of some secondary storage media, such
as flash RAM and floppy disks. The limitations of data files – such as imposing ordering rules
on the input, or needing the user or client software to manage files – can reduce the system’s
usability.

v v v

Implementation
The Wombat example above illustrated the four main kinds of operation on data files:

1. Simple Sequential Input (reading each chapter in turn)

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 13

2. Simple Sequential Output (writing the final output file)

3. Random Access (reading and writing the cross-reference file)

4. Sequential output to several files (writing the temporary chapter files)

Here are some issues to consider when using data files:

1. Incremental Processing. One simple and common way to manipulate data files is to read an
entire file sequentially from input, and/or to write a second file sequentially to the output (see
figure XX). Incremental processing requires extra programmer effort to implement, because
the program must be tailored specially to process its input file incrementally. Because the
program processes one large file in small increments, the program is typically responsible for
selecting the increments to process (although this can be left to the user by requiring them to
indicate increment boundaries in the data file, or provided a collection of smaller data files).

Input data

Process

Process

Process

Output data

Figure 7: Incremental Processing

Because the whole input file is processed in a single operating systems process, incremental
data chaining makes it easier to maintain global contextual information between each
processing stage, and easier to produce the final output — the final output is just written
incrementally from the program. Unfortunately, precisely because it works in one single long-
running process, it can be more difficult to keep the memory requirements down to a minimum.

2. Subfile Processing. Rather than processing a single file sequentially, you can divide data up
into a number of smaller subfiles. Write a program which processes one subfile, producing a
separate output file. Run this program multiple times (typically sequentially) to process each
subfile, and then combine the subfiles to produce the required output (see Figure YYY).

Input data

Output data

Process

Process

Process

Input subfiles Output subfiles

Figure 8: Subfile Processing

Subfile processing has several advantages, provided it’s easy to divide up the data. Subfile
processing tends to require less memory, since only a subset of the data is processed at a time;

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 14

and it is more robust to corruption and errors in the data files, since each such problem only
affects one file. Unfortunately, splitting the files requires effort either on the part of the
program or on the part of the user: co-ordinating the processing and combining the subfiles
requires programmer effort. See the pattern APPLICATION SWITCHING for a discussion of
techniques for communication between such processes.

Many compilers use subfile processing: they compile each code file separately, and only
combine the resulting temporary object files in a separate link phase. Because of its enormous
potential for reducing memory use, subfile processing was ubiquitous in old-time batch tape
processing [Knuth 1998].

3. Random Access. Rather than reading and writing files sequentially (whether incrementally
or using subfiles) you can access a single file randomly, selecting information and reading and
writing it in any order. Random access generally requires more programmer effort than
incremental or subfile processing, but is much more flexible: you don’t have to determine the
order items can be processed (and possibly divide them into subfiles) in advance.

To use random access, each process needs to be able to locate individual data items within the
files on secondary storage. Generally, you will need an index, a list of offsets from the start of
the file for each item of data required. Because the index will be used for most accesses to the
file, it needs to be stored in main memory, or easily accessible from main memory. Effective
indexing of files is a major science in its own right, but for simple applications there are two
straightforward options:

• The file may contain its own index, perhaps at the start of the file, which is read into
RAM by the process. RESOURCE FILES often use this approach.

• The application may scan the file on start up, creating its own index. The Wombat text
processor did this with its cross-reference file.

More complicated systems may use indexes in different files from the data, or even have
indexes to the index files themselves. File processing is covered in texts such as Folk, Zoellick
and Riccardi [1988], Date [1999] and Elmasri and Navathe [2000].

Temporary
File

Process Output
data

Creates

Process

Random access

Input
data

Figure 9: Random Access

Examples
1. Simple Subfile Processing

File compilation provides a typical example of subfile processing. The user splits each large
program into a number of files, and the compiler processes each file individually. Then the
linker ‘ld’ combines the various ‘.o’ output files into an executable program, testprog.

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 15

cc main.c
cc datalib.c
cc transput.c
ld –o testprog main.o datalib.o transput.o

2. Incremental Processing

The following Java code reverses the characters in each line in a file. It reads each line into a
buffer, reverses the characters in the buffer, and then writes the buffer out into a second file.
We call the reverse method with a BufferedReader and BufferedWriter to provide more
efficient access to the standard input and output than direct access to the disk read and write
functions, at a cost of some memory:

 reverse(new BufferedReader(new InputStreamReader(System.in)),
 new BufferedWriter(new OutputStreamWriter(System.out)));

The reverse method does the work, using two buffers, a String and a StringBuffer,
because Strings in Java cannot be modified.

public void reverse(BufferedReader reader, BufferedWriter writer)
 throws IOException {

String line;
StringBuffer lineBuffer;

while ((line = reader.readLine())!=null) {
 lineBuffer = new StringBuffer(line);
 lineBuffer.reverse();
 writer.write(lineBuffer.toString());
 writer.newLine();
}
writer.close();

}

The important point about this example is that it requires only enough memory to hold the
input and output buffers, and a single line of text to reverse, rather than the entire file, and so
can handle files of any length without running out of memory.

3. Processing with Multiple Subfiles

Consider reversing all the bytes in a file rather than just the bytes in each line. The simple
incremental technique above won’t work, because it relies on the fact that processing one line
does not affect any other lines. Reversing all the characters in a file involves the whole file, not
just each individual line.

We can reverse a file without needing to store it all in memory by using subfiles on secondary
storage. We first divide (scatter) the large file into a number of smaller subfiles, where each
subfile is small enough to fit into memory, and then we can reverse each subfile separately.
Finally, we can read (gather) each subfile in reverse order, and assemble a new completely
reversed file.

public void run() throws IOException {
scatter(new BufferedReader(new InputStreamReader(System.in)));
gather(new BufferedWriter(new OutputStreamWriter(System.out)));

}

To scatter the file into subfiles, we read SubfileSize bytes from the input reader into a
buffer, reverse the buffer, and then write it out into a new subfile

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 16

protected void scatter(BufferedReader reader) throws IOException {
int bytesRead;
while ((bytesRead = reader.read(buffer, 0, SubfileSize)) > 0) {
 StringBuffer stringBuffer = new StringBuffer(bytesRead);
 stringBuffer.append(buffer, 0, bytesRead);
 stringBuffer.reverse();
 BufferedWriter writer =

new BufferedWriter(new FileWriter(subfileName(nSubfiles)));
 writer.write(stringBuffer.toString());
 writer.close();
 nSubfiles++;
}

}

We can reuse the buffer each time we reverse a file (an example of FIXED ALLOCATION), but we
have to generate a new name for each subfile. We also need to count the number of subfiles we
have written, so that we can gather then all together again.

protected char buffer[] = new char[SubfileSize];

protected String subfileName(int n) {
return "subxx" + n;

}

protected int nSubfiles = 0;

Finally, we need to gather all the subfiles together. Since the subfiles are already reversed, we
just need to open each one starting with the last, read its contents, and write them to an output
file.

protected void gather(BufferedWriter writer) throws IOException {
for (nSubfiles--; nSubfiles >= 0; nSubfiles--) {

File subFile = new File(subfileName(nSubfiles));
BufferedReader reader =

new BufferedReader(new FileReader(subFile));
int bytesRead = reader.read(buffer, 0, SubfileSize);
writer.write(buffer, 0, bytesRead);
reader.close();
subFile.delete();

 }
writer.close();

}

v v v

Known Uses
Most programming languages compile using subfile processing. C, C++, FORTRAN and
COBOL programs are all typically compiled one file at a time, and the output object files are
then combined with a single link phase after all the compilation phases. C and C++ also force
the programmer to manage the ‘shared data’ for the compilation process in the form of header
files [Kernighan and Ritchie 1988]. Java takes the same approach for compiling each separate
class file; instead of a link phase Java class files are typically combined into a ‘JAR’ archive
file using COMPRESSION [Chen et al 1998].

The UNIX environment encourages programmers to use data files by providing many simple
‘filter’ executables: wc, tee, grep, sed, awk, troff, for example [Kernighan and Pike
1984]. Programmers can combine these using ‘pipes’; the operating system arranges that each
filter need only handle a small amount of data at a time.

Most popular applications use data files, and make the names of the current files explicit to the
user. Microsoft’s MFC framework enshrines this application design in its Document-View
architecture [Prosise 1999], supporting multiple documents, where each document normally
corresponds to a single data file. EPOC’s AppArc architecture [Symbian 1999] supports only
one document at a time; depending on the look and feel of the particularly environment this file
name may not be visible to the user.

Data File Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 17

Some word processors and formatters support subfiles – for example Microsoft Word, TeX,
and FrameMaker. [Microsoft Word 1997, Lamport 1986, Adobe 1997]. The user can create a
master document that refers to a series of subdocuments. These subdocuments are edited
individually, but when the document is printed each subdocument is loaded into memory and
printed in turn. The application need keep only a small amount of global state in memory
across subdocuments.

EPOC supports a kind of sub-file within each file, called a stream; each stream is identified
using an integer ID and accessed using a simple persistence mechanism. This makes it easy to
create many output subfiles and to access each one separately, and many EPOC applications
use this feature. Components that use large objects generally persist each one in a separate
stream; then they can defer loading each object in until it’s actually required – the template
class TSwizzle provides a MULTIPLE REPRESENTATION to make this invisible to client code
[Symbian 1999]. EPOC’s relational database creates a new stream for every 12 or so database
rows, and for every binary object stored. This makes it easy for the DBMS server to change
entries in a database – by writing a new stream to replace an existing one and updating the
database’s internal index to all the streams [Thoelke 1999].

Printer drivers (especially those embedded in bitmap-based printers) often use ‘Banding’,
where the driver renders and prints only a part of the page at a time. Banding reduces the size
of the output bitmap it must store, but also reduces the printing speed, as each page must be
rendered several times, once for each band.

See Also
RESOURCE FILES is an alternative for read-only data. PAGING is much simpler for the
programmer, though much more complex to implement. DATA FILES make it easier to implement
APPLICATION SWITCHING. Each subfile can be stored on SECONDARY STORAGE, using
COMPRESSION.

You can use either or both of FIXED ALLOCATION and MEMORY DISCARD to process each item
read from a DATA FILE.

PIPES AND FILTERS [Shaw and Garland 1996] describes a software architecture style based
around filters.

Rather than a simple Data File, you may need a full-scale database [Connolly and Begg 1999;
Date 1999; Elmasri and Navathe 2000]. Wolfgang Keller and Jens Coldewey [1998] provide a
set of patterns to store objects from OO programs into relational databases.

Resource Files Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 18

Resource Files Pattern
How can you manage lots of configuration data?

• Much program data is read-only configuration information and is not modified by the
program.

• The configuration data typically changes more frequently than program code.

• Data can be referenced from different phases of the program.

• You only need a few data items at any time.

• File systems support random access, which makes it easy to load a portion of a file
individually.

Sometimes a program’s memory requirements include space for a lot of read-only static data;
typically the program only uses a small amount of this at any one time. For example Word-O-
Matic needs static data such as window layouts, icon designs, font metrics and spelling
dictionaries. Much of this information may be requested at any arbitrary time within the
program, but when requested it is typically needed only for a short time. If the information is
stored in main memory – if, for example, you hard-coded it into your program – it will increase
the program’s overall memory requirements.

Furthermore, you may need to change the configuration information separately from the
program itself. What may seem to be different variants of the program (for different languages,
or with different user interface themes) may use the same code but require different
configuration data. Within a given configuration, many data items may be required at any time
– window formats or fonts for example, so you cannot use APPLICATION SWITCHING techniques
to bring this data in only for a given portion of the time. In general, however, much of the data
will not be used at any given time.

Therefore: Keep configuration data on secondary storage, and load and discard each item as
necessary.

Operating systems offer a simple way to store read-only static data: in a file on secondary
storage. File systems provide random access, so it’s easy to read just a single portion of a file,
ignoring the remainder. You can load a portion of file into temporary memory, use it for a
while, then discard it; you can always retrieve it again if you need it. In fact, with only a little
additional complexity, you can make a file into a read-only database, containing data items
each associated with a unique identifier.

Rather than hard-code each item of data specifically in the program code, you can give each
item a unique identifier. When the program requires the data, it invokes a special routine
passing the identifier; this routine loads the data from a ‘resource file’ and returns it to the
program. The program may discard the loaded data item when it’s no longer required. Typical
resources are:

• Strings
• Screen Layouts
• Fonts
• Bitmaps, icons, and cursors.

For example, all of Word-O-Matic’s window layouts, icon designs and text strings are stored
in resource files. When they are required Word-O-Matic retrieves the data from the resource

Resource Files Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 19

file, and stores in a temporary memory buffer. The memory can be reused when the data is no
longer required.

Consequences
The read-only static data doesn’t clutter primary storage, reducing the program’s memory
requirements. Multiple programs can share the same resource file, reducing the programmer
effort involved. Some operating systems share the loaded resources between multiple instances
of the same program or library, further decreasing memory requirements. This also makes it
easy to change the data without changing the program (e.g. to support multiple language
strings), increasing the program’s design quality.

However: this approach requires programmer discipline to place resources into the resource files, and
to load and release the resources correctly. Loading and unloading resource files reduces the
program’s time performance somewhat. In particular they can impact its start-up time.
Resource files also need programmer effort to implement, because you need some mechanism
to unload (and reload) the resources. It’s best if the operating system environment provides this
support.

v v v

Implementation
Since resource files are accessed randomly, applications need an index to locate data items (see
DATA FILES). Most implementations of resource files hold this index in the resource file itself;
typically at the start of the file. However this means that the resource file cannot simply be
human-readable text, but must be compiled. Resource Compilers also typically convert the
resource data into binary formats that can easily used by managed by application code,
reducing the memory occupied and improving application performance.

In practice you usually need a logical separation between different resources in a system: the
resources for one component are distinct from those for another, and the responsibility of
separate teams. Thus most resource file frameworks support more than one resource file at a
time.

Here are some things to consider when implementing resource files:

1. Making it easy for the programmer.

The task of loading and interpreting a resource is not a trivial one, so most systems provide
library functions. You need basic functions to load and release the raw resources; typically
you can also use more sophisticated functions:

• To manage the loading and release of resources, often from multiple files.

• To build graphical dialogs and constructs from the information

• To transfer bitmap and drawing resources (fonts, icons, cursors, drawing primitives)
directly from the file to the screen without exposing their structure to the program.

• To insert parameters into the resource strings.

It’s not just enough to be able to load an unload resources into systems at runtime; you also
have to create the resources in the first place. Programming environments also provide facilities
to help you produce resources:

• A Resource compiler – which creates a resource file database from a text file
representation.

Resource Files Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 20

• Dialog Editors. These allow programmers to ‘screen paint’ screens and dialogs with
user controls; programmers can then create resource-file descriptions from the results.
An example is Microsoft Developer Studio (see Figure XX), but there are very many
others.

Figure 10: A Dialog Editor

2. Working with Resource Files to Save Memory.

Some resource file systems support compression. This has a small time overhead for each
resource loaded, but reduces the file system space taken by the files. ADAPTIVE COMPRESSION

algorithms are inappropriate for compression whole files, though, as it must be possible to
decode any data item independently of the rest of the file. You can compress individual
resources if they are large enough, such as images or sound files

It’s worthwhile to take some effort to understand how resource loading works on your specific
system as this can often help save memory. For example, Windows also supports two kinds of
resource: PRELOAD and LOADONCALL. Preloaded resources are loaded when the program is first
executed; a LOADONCALL resource loads only when the user code requests the specific resource.
Clearly to save memory, you should prefer LOADONCALL. Similarly Windows 3.1 doesn’t load
strings individually, but only in blocks of 16 strings with consecutive ID numbers. So you can
minimise memory use by arranging strings in blocks, such that the strings in a single block are
all used together. By way of contrast, the Windows LoadIcon function doesn’t itself access the
resource file; that happens later when a screen driver needs the icon – so calling LoadIcon
doesn’t in itself use much memory. Petzold [1998] discusses the memory use of Windows
resource files in more detail.

3. Font Files

You often want to treat font resources very differently from other kinds of resources. For a
start, all applications will share the same set of fonts, and font descriptions tend to be much
larger than other resources. A sophisticated font handling system will load only portions of
each file as required by specific applications: perhaps only the implementation for a specific

Resource Files Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 21

font size, or only the characters required by the application for a specific string. The last
approach is particularly appropriate for fonts for the Unicode characters, which may contain
many thousands of images [Pike and Thompson 1993].

4. Implementing a resource file system.

Sometimes you need to implement your own resource file system. Here are some issues to
consider:

4.1 Selecting variants. How will the system select which version of the resource files is
loaded? There are various options. Some systems include only one resource file with each
release. Others (e.g. most MS Windows applications) support variants for languages, but
install only one; changing language means overwriting the files. Still other systems select the
appropriate variant on program initialisation; for example chooses the variant by file extension
(if the current language is number 01, application Word loads resource file WORD.R01). Other
systems may even permit the system to change its language ‘on the fly’, although this is bound
to require complex interactions between applications.

4.2 Inserting parameters into strings. The most frequent use of resources is in strings. Now
displayed strings often contain variable parameters: “You have CC things to do, NN”, where
the number NN and the name CC vary according to the program needs. How do you insert
these parameters?

A common way is to use C’s printf format: “You have %d things to do, %s”. This works
reasonably, but has two significant limitations. First, the normal implementation of printf
and its variants are liable to crash the program if the parameters required by the resource
strings are not those passed to the strings. So a corrupt or carelessly constructed resource file
can cause unexpected program defects. Second, the printf format isn’t particularly flexible
at supporting different language constructions – a German, for example, might want the two
parameters in the other order: “%s: you have %d things to do.”.

A more flexible alternative is to use numbered strings in the resource strings: “You have %1
things to do, %2”. The program code has responsibility to convert all parameters to strings
(which is simple, and can be done in a locale-sensitive way), and a standard function inserts the
strings into the resource string. It is a trivial task to implement this function to provide default
behaviour or an error message if the number of strings passed doesn’t match the resource
string.

Examples
Here’s an example of an MS Windows resource file for an about box:

// About Box Dialog
//

IDD_ABOUTBOX DIALOG DISCARDABLE 34, 22, 217, 55
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About DEMOAPP"
FONT 8, "MS Sans Serif"
BEGIN
 ICON 2,IDC_STATIC,11,17,18,20
 LTEXT "Demonstration Application by Charles Weir",
 IDC_STATIC,40,10,79,8
 LTEXT "Copyright \251 1999",IDC_STATIC,40,25,119,8
 DEFPUSHBUTTON "OK",IDOK,176,6,32,14,WS_GROUP
END

The C++ code to use this using the Microsoft Foundation Classes is remarkably trivial:

Resource Files Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 22

///
// CAboutDlg dialog

CAboutDlg::CAboutDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CAboutDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
}

Note the explicit syntax of the comment, {{AFX_DATA_INIT(CAboutDlg); this allows other
Microsoft tools and ‘wizards’ to identify the location; the Wizard can determine any variable
fields in the dialog box, and insert code to initialise them and to retrieve their values after the
dialog has completed. In this case there are no such variables, so no code is present.

v v v

Known Uses
Virtually all Apple Macintosh and MS Windows GUI programs use resource files to store GUI
resources, especially fonts [Apple 1985; Petzold 1998]. EPOC stores all language-dependent
information (including compressed help texts) in resource files, and allows the system to select
the appropriate language at run-time. EPOC’s Unicode font handling minimises the memory
use of the font handler with a FIXED-SIZE MEMORY buffer to store a cached set of character
images.EPOC16 used compression to reduce the size of its resource files [Edwards 1997].

Many computer games use resource files – from hand-helds with extra static ROM, to early
microcomputers backed with cassette tapes and floppies, and state-of-the-art game consoles
based on CD-ROMs. The pattern allows them to provide many more screens, levels, or maps
than could possibly fit into main memory. Each level is stored as a separate resource in
secondary storage, and then loaded when then user reaches that level. Since the user only plays
on one level at any time, memory requirements are reduced to the storage required for just one
level. This works well for arcade-style games where users play one level, then proceed to the
next (if they win) or die (if they lose), because the sequence of levels is always predictable.
Similarly many of the variations of multi-user adventure games keep the details of specific
games: locations, local rules, monsters, weapons as resource files; as they tend to be large, they
are often stored COMPRESSED.

See Also
DATA FILES provide writable data storage; APPLICATION SWITCHING and PACKAGES do for code
what RESOURCE FILES does for unmodifiable data.

Each resource file can be stored in SECONDARY STORAGE or READ-ONLY MEMORY, and may use
COMPRESSION..

Petzold [1998] and Microsoft [1997] describe Microsoft Windows Resource files. Tasker et al
[2000] describes using EPOC resource files.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 23

Packages
Also known as: Components, Lazy Loading, Dynamic Loading, Code Segmentation.

How can you manage a large program with lots of optional pieces?

• You don’t have space in memory for all the code and is static data.

• The system has lots of functionality, but not all will be used simultaneously

• You may require any arbitrary combination of different bits of functionality.

• Development works best when there’s a clear separation between developed
components.

Some big programs are really small programs much of the time — the memory requirements
of all the code are much greater the requirements for the code actually used in any given run of
the program. For example Strap-It-On’s Spin-the-WebTM web browser can view files of many
different kinds at once, but it typically reads only the StrapTML local pages used by its help
system. Yet the need to support other file types increases the program’s code memory
requirements even when they are not needed.

In these kinds of programs, there is no way of predicting in advance which features you’ll need,
nor of ordering them so that only one is in use at the same time. So the APPLICATION SWITCHING

pattern cannot help, but you still want the benefits of that pattern – that the memory
requirements of the system are reduced by not loading all of the program in to main memory at
the same time.

Therefore: Split the program into packages, and load each package only when it’s needed.

Any run-time environment which stores code in disk files must have a mechanism to activate
executables loaded from disk. With a relatively small amount of effort, you can extend this
mechanism to load additional executable code into a running program. This will only be
useful, though, if most program runs do not need to load most of this additional code.

You need to divide the program into a main program and a collection of independently loaded
packages. The main program is loaded and starts running. When it needs to use a facility in a
package, a code routine somewhere will load the appropriate package, and call the package
directly.

For example, the core of Spin-the-Web is a main program that analyses each web page, and
loads the appropriate viewer as a package.

Consequences
The program will require less memory because some of its code is stored on SECONDARY

STORAGE until needed.

The program will start up quicker, as only the small main program needs to be loaded initially,
and can begin running with less memory than would otherwise be required. Because each
package is fairly small, subsequent packages can be loaded in quickly without pauses for
changing phases (as would be caused by the APPLICATION SWITCHING pattern).

Because packages aren’t statically linked into the application code, dynamic loading
mechanisms allow third parties or later developers to add functionality without changing or
even stopping the main program. This significantly increases the system’s usability and
maintainability.

However: Programmer effort is needed to divide up the program into packages.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 24

Many environments never unload packages, so the program’s memory requirements can
steadily increase, and the program can still run out of memory unless any given run uses only a
small part of its total functionality. It takes programmer effort to implement the dynamic
loading mechanism and to make the packages conform to it, and to define the strategy of when
to load and unload the packages; or to optimise the package division and minimise the loading
overhead. This mechanism can often be reused across programs, or it may be provided by the
operating system; on the other hand many environments provide no support for dynamic
loading.

Because a package isn’t loaded until it’s required dynamic loading means that the system may
not detect a missing package until well after the program has loaded; this slightly reduces the
program’s usability. Also if access to the package is slow (for example, over the Web), the
time taken to load a package can reduce the program’s responsiveness, which also reduces the
program’s usability. This arbitrary delay also makes PACKAGES unsuitable for real-time
operations.

Packages can be located remotely and changed independently from the main program. This
produces security implications – a hostile agent may introduce viruses or security loopholes
into the system by changing a package.

v v v

Implementation
To support packages, you need three things:

1) A system that loads code into RAM to execute it.

2) A partition of the software into packages such that normally only a subset of the packages
need be active.

3) Support for dynamically loadable packages — usually position independent or relocatable
object code.

Here are some issues to consider when using or implementing packages as part of your system.

1. Processes as Packages

Perhaps the simplest form of a package is just a separate process. With careful programming,
two processes that run simultaneously can appear to users as a single process, although there
can be a significant cost in performance and program complexity to achieve this. Implementing
each package in separate processes has several key advantages:

• The package and main program will execute in separate address spaces, so a fatal error in
the package will not necessarily terminate the main program.

• The memory allocated to the package can be discarded easily, simply by terminating the
process when the package is no longer needed.

• In some cases, the desired package may already exist as an application in its own right.
For example we may want packages to do word-processing, drawing, or spreadsheet
managing. Such applications exist already, and are implemented as separate processes.

There are two common approaches to use processes as packages:

1. The client can execute the process in the same way that, say, the operating system shell
might do. It runs the process until its complete, perhaps reading its standard output (see
DATA FILES)

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 25

2. The client can use operating system Inter-Process Communication (IPC) mechanisms to
communicate with the process.

This second approach is taken by some forms of the Microsoft ActiveX (‘COM’) frameworks,
by IBM’s System Object Model (SOM) and by frameworks based on CORBA [Box 1998;
Szyperski 1997; Henning and Vinoski 1999; Egremont 1998]. Each uses some form of PROXY

[Gamma et al 1995, Buschmann et al 1996] to give the client access to objects in the package
object. The Essential Distributed Objects Survival Guide [Orfali 1996] for a discussion and
comparison of these environments.

2.Using Dynamically Linked Libraries as C++ Packages

You can also consider using Shared, or Dynamically Linked, Libraries (DLLs) as packages.
Normally an executable loads all its DLLs during initialisation, so DLLs do not behave as
packages by default. Most environments, however, provide additional mechanisms to load and
unload DLLs ‘on the fly’.

Some frameworks support delayed loading of DLLs: you can implement Microsoft COM
objects, for example, as DLLs that load automatically when each object is first accessed.
Although COM’s design uses C++ virtual function tables, many other languages have provided
bindings to access COM objects [Box 1998].

Other environments simply provide mechanisms to load the DLL file into RAM, and to invoke
a function within the DLL. How can you use this to implement PACKAGES?

Typically you can identify their externally callable, exported, functions in DLLs either by
function name or by function ordinal (the first exported function is ordinal 0, the second, 1,
etc.). With either approach it would be quite a task to provide stubs for all the client functions
and patch each to the correct location in the DLL.

Instead you can use object-orientation’s dynamic binding to provide a simpler solution. This
requires just a single call to one DLL entry point (typically at index 0 or 1). This function
returns a pointer to a single instance of a class that supports an interface known to the client.
From then on the client may call methods on that instance; the language support for dynamic
linking ensures that the correct code executes. Typically this class is an ABSTRACT FACTORY or
provides FACTORY METHODS [Gamma et al 1995]. Figure 11 shows such a library and the
classes it supports.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 26

Classes visible to software in the client

The Dynamically Loaded Package

Client

FactoryMethod1()=0
FactoryMethod2()=0

AbstractFactory

Ins
tan

tia
tes

ins
tan

ce
 of

FactoryMethod1()
FactoryMethod2()

FactoryImplementation

function
declarations

LibClass1

functions...

LibClass1Impl
 Instantiates

RMyLibrary

R
eferences

instance of

Loads
Figure 11: Dynamically loaded package with abstract factory

3. Implementing Packages using Code Segmentation

Many processor architectures and operating systems provide code segmentation. This
supports packages at the machine code or object code level. A segmented architecture considers
a program and the data that it accesses to be made up of some number of independent
segments, rather than one monolithic memory space [Tannenbaum 1992].

Typically each segment has its own memory protection attributes — a data segment may be
readable and writable by a single process, where a code segment from a shared library could be
readable by every process in the system. As with packages, individual segments can be
swapped to and from secondary storage by the operating system, either automatically or under
programmer control. Linkers for segmented systems produce programs divided up into
segments, again either automatically or following directives in the code.

Many older CPUs supported segmentation explicitly, with several segment registers to speed-
up access to segments, and to ensure that the code and data in segments can be accessed
irrespective of the segment's physical memory. Often processor restrictions limited the
maximum size of each segment (64K in the 8086 architecture). More modern processor
architectures tend to combine SEGMENTATION with PAGING.

4. Loading Packages

If you’re not using segmentation or Java packages, you’ll have to write some code somewhere
in each application to load the packages. There are two standard approaches to where you put
this code:

4.1 Manual loading: The client loads the package explicitly. This is best when:

1) The client must identify which it requires of several packages with the same interface.
(E.g. loading a printer driver), or

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 27

2) The library provides relatively simple functionality, and it’s clear when it needs to be
unloaded.

4.2 Autoloading: The client calls any function supported by the library. This function is
actually a stub provided by the client; when called it loads the library and invokes the
appropriate entry point. This is better when:

1) You want a simple interface for the client, or

2) There are many packages with complicated interdependencies, so there’s no easy algorithm
to decide when to load a package.

Both approaches are common. For example, the Microsoft’s COM framework and most
EPOC applications do explicit loading; the Emacs text editor does autoloading [Box 1998;
Tasker 2000; Stallman 1984].

5. Unloading packages

You’ll save most memory if there’s a mechanism to unload packages that are no longer
required. To do this you need also a way to detect when there is no longer a need for the
loaded code. In OO-environments this is easy to decide: the loaded code is no longer needed
when there are no instances of objects supported by the package. So you can use REFERENCE

COUNTING or GARBAGE COLLECTION to decide when to unload the code.

Loading a package takes time, so some implementations choose to delay unloading packages
even when clients notify them that they may do so. Ideally they must unload these cached
packages when system memory becomes short – the CAPTAIN OATES PATTERN.

6. Version Control and Binary Compatibility

You need to make sure that each package loaded works correctly with the component that
loaded it – even if the two pieces of code were developed and released at different times. This
requirement is often called ‘binary compatibility’, and is distinct from ‘source code
compatibility’. The requirements of ‘binary compatibility’ depend both on the language and on
the compilation system used, but typically include:

• New versions of the clients expect the same externally visible entry points, parameters
and return values; new services support the same ones.

• New clients don’t add extra parameter values; new services don’t add extra returned
values. This is related to the rules for sub-typing – see Meyer [1997].

• New services support the same externally visible state as before.

• New services don’t add new exceptions or error conditions unless existing clients have a
way to handle them.

The problem of version control can become a major headache in development projects, when
teams are developing several packages in parallel. Java, for example, provides no built-in
mechanism to ensure that two packages are binary compatible; incompatible versions typically
don’t fail to load, but instead produce subtle program defects. To solve this problem, some
environments provide version control in the libraries. Solaris, for example, supports major and
minor version numbers for its DLLs. Minor version changes retain binary compatibility; major
ones do not.

Drossopoulou et al [1998] discusses the rules for Java in more detail. [Symbian
Knowledgebase 2000] discusses rules for C++ binary compatibility.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 28

7. Optimising Packages

If you are using PACKAGES, you’ll only have a fraction of the total code and data in memory at
any given time – the working set. What techniques can you use to keep this working set to a
minimum? You need to ensure that code that is used together is stored in the same package.
Unfortunately, although organizing compiled code according to classes and modules is a good
start, it doesn’t provide an optimum solution. For example each of the many visual objects in
the Strap-it-On’s Mind-Mapping application have functionality to create themselves from
vague text descriptions, to render animated pictures on the screen, to interact in weird and
stimulating ways, to save themselves to store and to restore themselves again. Yet a typical
operation on a mind-map will use only one of these types of functionality – but in every class
(see figure XX).

Segment: Display code

Segment: Persistence code

Segment: Object creation code

Class:
Abstract
Concept

Class:
Mistake

Class:
Verbal

Concept

Class:
Idea

Figure 13: Example - Class divisions don't give appropriate segments

You could reorganise the code so that the compilation units correspond to your desired
segments – but the results would be difficult to manage and for programmers to maintain.
Using the terminology of Soni et al [1995], the problem is that we must organise the compiled
code according to the execution architecture of the system, while the source code is organised
according to its conceptual architecture. Most development environments provide profilers
that show this execution architecture, so it’s possible for programmers to decide a segmentation
structure – at the cost of some programmer effort – but how should they implement it?

Some compilation environments provide a solution. Microsoft’s C++ Compiler and DEC’s
FORTRAN compiler, for example, allow the user to partition each compilation unit into
separate units of a single function, called ‘COMDATs’. Programmers can then order these into
appropriate segments using a Link option: /ORDER:@filename [Microsoft 1997]. Sun’s
SparcWorks’ analyzer tool automates the procedure still further, allowing ‘experiments’ with
different segmentation options using profiling data, and providing a utility (er_mapgen) to
generate the linker map file directly from these experiments.

For linkers without this option, an alternative is to pre-process the source files to produce a
single file for each function, and then to order the resulting files explicitly in the linker
command line. This requires additional programmer discipline, since it prevents us making
code and data local to each source file.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 29

Example
This EPOC C++ example implements the ‘Dynamically loaded package with abstract factory’
approach illustrated in Figure 11. This component uses animated objects in a virtual reality
application. The animated objects are of many kinds (people, machinery, animals, rivers, etc.),
only a few types are required at a time, and new implementations will be added later. Thus the
implementations of the animated objects live in Packages, and are loaded on demand.

Classes visible to the Animation Component

The Person Implementation Package

:Animation Component

CAnimatedObject*
 NewObjectL()=0;

CAnimatedObjectFactory

CAnimatedObject*
 NewObjectL()

CPersonFactory

StartMove(...) = 0
etc.

CAnimatedObject

StartMove(...)
etc.

CPerson

Instantiates

RLibrary

Loads

U
se

s

Figure 14: The Example Classes

1. Implementation of the Animation Component

EPOC implements packages as DLLs. The code in the animation component must load the
DLL, and keep a handle to if for as long as it has DLL-based objects using its code. It might
create a new CAnimatedObject using C++ something like the following (where the current
object has a longer lifetime than any of the objects in package, and iAnimatedObjectFactory
is a variable of type CAnimatedObjectFactory*)

iAnimatedObjectFactory = CreateAnimatedObjectFactoryFromDLL(fileName);
 CAnimatedObject* newAnimatedObject =
 iAnimatedObjectFactory->NewAnimatedObjectL();

The implementation of CreateAnimatedObjectFactoryFromDLL is as follows. It uses the
EPOC class RLibrary as a handle to the library; the function RLibrary::Load loads the
library; RLibrary::Close unloads it again. As with all EPOC code, it must implement
PARTIAL FAILURE if loading fails. Also libraryHandle is a stack variable, so we must ensure it
is Close’d if any later operations do a PARTIAL FAILURE themselves, using the cleanup stack
function, CleanupClosePushL.

CAnimatedObjectFactory* CreateAnimatedObjectFactoryFromDLL(const TDesC& aFileName)
{
 RLibrary libraryHandle;
 TInt r=libraryHandle.Load(aFileName);
 if (r!=KErrNone)
 User::Leave(r);
 CleanupClosePushL(libraryHandle);

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 30

We must ensure that the library is the correct one. In EPOC every library (and data file) is
identified by three Unique Identifier (UID) integers at the start of the file. The second UID
(index 1) specifies the type of file:

if(libraryHandle.Type()[1]!=TUid::Uid(KUidAnimationLibraryModuleV01))
 User::Leave(KErrBadLibraryEntryPoint);

EPOC DLLs export functions by ordinal rather than by name [Tasker 1999a]. By convention
a call to the library entry point at ordinal one returns an instance of the FACTORY OBJECT,
CAnimatedObjectFactory.

 typedef CAnimatedObjectFactory *(*TAnimatedObjectFactoryNewL)();
 TAnimatedObjectFactoryNewL libEntryL=
 reinterpret_cast<TAnimatedObjectFactoryNewL>(libraryHandle.Lookup(1));
 if (libEntryL==NULL)
 User::Leave(KErrBadLibraryEntryPoint);
 CAnimatedObjectFactory *factoryObject=(*libEntryL)();
 CleanupStack::PushL(factoryObject);

We’ll keep this factory object for the lifetime of the package, so we pass the RLibrary handle
to its construction function:

 factoryObject->ConstructL(libraryHandle);
 CleanupStack::Pop(2); // libraryHandle, factoryObject
 return factoryObject;
}

The CAnimatedObjectFactory factory object is straightforward. It merely stores the library
handle. Like almost all EPOC objects that own resources, it derives from the CBase base
class, and provides a ConstructL function [Tasker et al 2000]. Some of its functions will be
called across DLL boundaries; we tell the compiler to generate the extra linkup code using the
EPOC IMPORT_C and EXPORT_C macros.

class CAnimatedObjectFactory : public CBase {
public:
 IMPORT_C ~CAnimatedObjectFactory();
 IMPORT_C void ConstructL(RLibrary& aLib);
 IMPORT_C virtual CAnimatedObject * NewAnimatedObjectL()=0;
private:
 RLibrary iLibraryHandle;
};

The implementations of the construction function and destructor are simple:
EXPORT_C void CAnimatedObjectFactory::ConstructL(RLibrary& aLib) {
 iLibraryHandle = aLib;
}

EXPORT_C CAnimatedObjectFactory::~CAnimatedObjectFactory() {
 iLibraryHandle.Close();
}

2. Implementation of the Package

The package itself must implement the entry point to return a new factory object, so it needs a
class that derives from CAnimatedObjectFactory:

class CPersonFactory : public CAnimatedObjectFactory {
public:
 virtual CAnimatedObject * NewAnimatedObjectL();
};

CAnimatedObject * CPersonFactory::NewAnimatedObjectL() {
 return new(ELeave) CPerson;
}

The package also needs the class to implement the CAnimatedObject object itself:
class CPerson : public CAnimatedObject {
public:
 CPerson();
 // etc.
};

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 31

Finally, the library entry point simply returns a new instance of the concrete factory object (or
null, if memory fails). EXPORT_C ensures that this function is a library entry point. In MS
C++ we ensure that the function corresponds to ordinal one in the library by editing the ‘DEF’
file [Microsoft 1997]

EXPORT_C CAnimatedObjectFactory * LibEntry() {
 return new CPersonFactory;
}

v v v

Known Uses
Most modern operating systems (UNIX, MS Windows, WinCE, EPOC, etc.) support
dynamically linked libraries [Goodheart and Cox 1994, Petzold 1998, Symbian 1999]. Many
applications delay the loading of certain DLLs, particularly for add-ins – added functionality
provided by third parties. Lotus Notes loads viewer DLLs when needed; Netscape and Internet
Explorer dynamically load viewers such as Adobe PDF viewer; MS Word loads document
converters and uses DLLs for add-in extensions such as support for Web page editing. Some
EPOC applications explicitly load packages: the Web application loads drivers for each
transport mechanism (HTTP, FTP, etc.) and viewers for each data type.

Printer drivers are often implemented as packages. This allows you to add new printer drivers
without restarting any applications. All EPOC applications dynamically load printer drivers
where necessary. MS Windows 95 and NT do the same.

Many Lisp systems use dynamic loading. GNU Emacs, for example, consists of a core text
editor package plus auto-loading facilities. Most of the interesting features of GNU Emacs
exist as packages: intelligent language support, spelling checkers, email packages, web
browsers, terminal emulators, etc [Stallman 1984].

Java makes great use of dynamic loading. Java loads each class only when it needs it, so each
class is effectively a package. Java implementations may discard classes once they don’t need
them any more, using garbage collection, although many environments currently do not. Java
applets are also treated as dynamically loading packages by Web browsers. A browser loads
and run applets on pages it is displaying, and then stops and unloads applets when their
containing pages are no longer displayed. [Lindholm and Yellin 1999]. The Palm Spotless JVM
loads almost all classes dynamically, even those like String that are really part of the Java
Language [Taivalsaari et al 1999].

Many earlier processors supported segmentation explicitly in their architecture. The 8086 and
PDP-11 processors both implement segment registers. Programmers working in these
environments often had to be acutely aware of the limitations imposed by fixed segment sizes;
MS Windows 1, 2 and 3 all reflected the segmented architecture explicitly in the programming
interfaces [Hamacher 1984; Chappell 1994].

See Also
APPLICATION SWITCHING is a simpler alternative to this pattern, which is applicable when the task
divides into independent phases. PAGING is a more complex alternative. Unloaded packages
can live on SECONDARY STORAGE, and maybe use COMPRESSION.

ABSTRACT FACTORY provides a good implementation mechanism to separate the client interfaces
from the package implementations. VIRTUAL PROXIES can be used to autoload individual
packages [Gamma et al 1995]. You may need REFERENCE COUNTING or GARBAGE COLLECTION to
decide when to unload a package.

Packages UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 32

Coplien’s Advanced C++ Programming Styles and Idioms [1994] describes dynamically
loading C++ functions into a running program.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 33

Paging Pattern
Also known as: Virtual Memory, Persistence, Backing Store, Paging OO DBMS.

How can you provide the illusion of infinite memory?1

• The memory requirements for the programs code and data are too big to fit into RAM.

• The program needs random access to all it’s code and data.

• You have a fast secondary storage device, which can store the code and data not
currently in use.

• To decrease programmer effort and usability, programmers and users should not be
aware that the program is using secondary storage.

Some systems’ memory requirements are simply too large to fit into the available memory.
Perhaps one program’s data structures are larger than the system’s RAM memory, or perhaps
a whole system cannot fit into main memory, although each individual component is small
enough on its own.

For example, the Strap-It-On’s weather prediction system, Rain-SightTM, loads a relatively
small amount of weather information from it’s radio network link, and attempts to calculate
whether the user is about to get rained on. To do that, it needs to work with some very large
matrices indeed – larger than can fit in memory even if no other applications were present at
all. So the Rain-Sight marketing team have already agreed to distribute a 5 Gb ‘coin-disk’
pack with every copy of the program, ample for the Rain-Sight data. The problem facing the
Rain-Sight developers is how to use it.

You can manage data on secondary storage explicitly using a DATA FILE. This has two
disadvantages.

• The resulting code needs to combine processing the data with shuffling it between
primary and secondary storage. The result will be complex and difficult to maintain,
costing programmer effort to implement and programmer discipline to use correctly,
because programmers will have to understand both domain-specific requirements of the
program, and the fine points of data access.

• In addition this approach will tend to be inefficient for random access to data. If you
read each item each time it’s accessed, and write it back after manipulating it, this will
require a lot of slow secondary storage access.

Other techniques, such as COMPRESSION and PACKED DATA, will certainly reduce the RAM
memory requirements, but can only achieve a finite reduction; ultimately any system can have
more data than will fit into RAM.

Therefore: Keep a system’s code and data on secondary storage, and move them to and from main
memory as required.

No software is completely random in its access to memory; at any given time a typical system
will be working with only a small subset of the code and data it has available. So you need to

1 Sometimes the program is just too big, to complex, or you are too lazy to segment,
subdivide, chain, phase, slice, dice, vitamise, or food process the code any more. Why
should programmers have to worry about memory! Infinite memory for all is a right, not a
privilege! Those small memory guys are just no-life-losers!

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 34

keep only a relatively small working set in memory; the rest of the system can stay on
secondary storage. The software can access this working set very fast, since it’s in main
memory. If you need to access information on secondary storage, you must change the working
set, reading the new data required, and writing or discarding any data that occupied that space
beforehand.

You must ensure that the working set changes only slowly – that the software exhibits locality
of reference, and tends to access the same objects or memory area in preference to completely
random access. It helps that memory allocators will typically put items allocated together in the
same area of memory. So objects allocated together will typically be physically near to each
other in memory, particularly when you’re using FIXED ALLOCATION.

There are three forms of this pattern in use today [Tannenbaum 1992, Goodheart 1994]:

Demand Paging is the most familiar form. The memory management hardware, or interpreter
environment, implements virtual memory so that there is an additional page
table that maps addresses used in software to pages of physical memory.
When software attempts to access a memory location without an entry in the
page table, the environment frees up a page by saving its data, and loads the
new data from secondary storage into physical memory, before returning the
address of the physical memory found.

Swapping is a simpler alternative to paging, where the environment stops a process, and
writes out all its data to Secondary Storage. When the process needs to
process an event, the environment reloads all the data from secondary storage
and resumes. This approach is common on portable PCs, where the entire
environment is saved to disk, though the intent there is to save power rather
than memory.

Object Oriented Databases are similar to Demand Paging, but the unit of paged memory
is an object and its associated owned objects (or perhaps, for efficiency, a
cluster of such objects). This approach requires more programmer effort than
demand paging, but makes the data persistent, and allows multiple processes
to share objects.

So, for example, the Rain-Sight team decided to use Paging to make use of their disk. The
Strap-OS operating system doesn’t support hardware-based paging, so the team hacked a Java
interpreter to implement paging for each Java object. The team then defined objects to
implement each related part of the Rain-Sight matrices (which are always accessed together),
giving them acceptable performance and an apparent memory space limited only by the size of
the ‘coin disk’.

Consequences
Paging is the ultimate escape of the memory-challenged programmer. The programmer is
much less aware of paging than any other technique, since paging provides the illusion of
essentially infinite memory — the program’s memory requirements are no longer a problem.
So paging tends to increase other aspects of a system’s design quality, and maintainability
because memory requirements are no longer an overriding issue.

Paging needs little programmer effort and programmer discipline to use, because it doesn’t
need a logical decomposition of the program. Because paging does not require any artificial
division of programs into phases or data into files it can make systems more usable. Programs
using paging can easily accommodate more memory by just paging less, so paging improves
scalability, as well.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 35

Paging can make good local use of the available memory where the program’s memory use is
distributed globally over many different components, since different components will typically
use their data at different times.

However: Paging reduces a program’s time performance, since some memory accesses require
secondary storage reads and writes. It also reduces the predictability of response times,
making it unsuitable for real-time systems. Paging performs badly if the memory accesses do
not exhibit locality of reference, and this may require programmer effort to fix.

Paging needs fast secondary storage to perform well. Of course ‘fast’ is a relative term; lots of
systems have used floppy disks for paging. Because paging tends to make lots of small data
transfers rather than a few large ones, the latency of the secondary storage device is usually
more important than its throughput. Furthermore, PAGING’s continuous use of secondary
storage devices increases the system’s power consumption, and reduces the lifetime of storage
media such as flash RAM and floppy disks.

Since paging doesn’t require programmer discipline, a program’s memory requirements can
tend to increase in paged systems, requiring more secondary storage and impacting the
program’s time performance. Paging requires no local support from within programs, but
requires low-level global support, often provided by the hardware and operating system, or an
interpreter or data manager. Because intermediate information can be paged out to secondary
storage, paging can affect the security of a system unless the secondary storage is as well
protected as the primary storage.

v v v

Implementation
Paging is typically supported by two main data structures, see Figure XXX.

Page frames live in main memory, and contain the ‘paged in’ RAM data for the program.
Each page frame also has control information: the secondary storage location corresponding to
the current data and a dirty bit, set when the page memory has been changed since loading
from secondary storage.

The page table also lives in main memory, and has an entry for each page on secondary
storage. It stores that page is resident in memory, and if so, in which page frame it is stored.
Figure XXX below shows a Page Table and Page Frames.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 36

Page table Real memoryApplication
0

100

200

300

400

Sees

Figure 15: Page Table and Page Frames

As you run a paging application, it accesses memory via the page table. Memory that is paged
in can be read and written directly: writing to a page should set the page’s dirty bit. When you
try to access a page that is ‘paged out ‘ (not in main memory) the system must load the page
from secondary storage, perhaps saving an existing page in memory back to secondary storage
to make room for the new page. Trying to access a page in secondary storage page is called a
page fault. To handle a page fault, or to allocate a new page, the system must find a free page
frame for the data. Normally, the frame chosen will already contain active data, which must be
discarded, and if the dirty bit is set, the system must write the contents out to secondary
storage. Once the new frame is allocated, or its contents are loaded from secondary storage, the
page table can be updated and the program’s execution continue.

Here are some issues to consider when implementing paging.

1. Intercepting Memory Accesses

Probably the single most difficult part of implementing paging is the need to intercept memory
accesses. In addition, this intercept must distinguish access for writing, which must set the
‘dirty bit’, from access for read, which doesn’t.

There are several possible mechanisms:

MMU Many modern systems have a Memory Management Unit (MMU) in addition to
the Central Processing Unit (CPU). These provide a set of virtual memory
maps (typically one for each process), which map the memory locations
requested by the code to different real memory addresses. If the program
accesses an address that hasn’t been loaded, this causes a page fault interrupt,
and the interrupt driver will load the page from secondary storage.

The MMU also distinguishes pages as read-only and read-write. An attempt to
write to a read-only page also causes a page-fault interrupt, which makes it easy
to set the dirty bit for that page.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 37

Interpreter It’s fairly straightforward to implement paging for interpreted environments.
The run-time interpreter must implement any accesses to the program or its
data, so it is relatively easy to intercept accesses and to distinguish reads from
writes.

Process
Swap

When you swap entire processes, you don’t need to detect memory access as
processes are not running when they are swapped out.

Data
Manager

For programs in an environment with no built-in paging, we can use ‘smart
pointers’ to classes to intercept each access to an object. Then a data manager
can ensure that the object is in store and to manage loading, caching and
swapping.

In this case it’s appropriate to page entire objects in and out, rather than
arbitrarily sized pages.

2. Page Replacement

How can you select which page frame to choose to free up to take a new or loaded page? The
best algorithm is to remove the page that will be needed the furthest into the future — the least
important page for the system's immediate needs [Tannenbaum 1992]. Unfortunately this is
usually impossible to implement, so instead you have to guess the future on the basis of the
recent past. Removing the least frequently used (LFU) page provides the most accurate
estimation, but is quite difficult to implement. Almost as effective but easier to implement is a
least recently used (LRU) algorithm, which simply requires keeping a list of all page frames,
and moving each page to the top of this list as it is used. Choosing a page to replace at random
is easy to implement and provides sufficient performance for many situations.

Most implementations of MMU paging incorporate Segmentation techniques as well (see
PACKAGES). Since you already have the process’s virtual data memory split into pages, it’s an
obvious extension to do the same for code. Code is READ-ONLY, and typically needs only very
trivial changes when it’s loaded from secondary storage to memory. So there’s no point in
wasting space in the swap file; you can take the code pages directly from the code file when
you want them and discard them when they’re no longer needed.

3. Working Set Size

A program’s working set size is the minimum amount of memory it needs to run without
excessive page faults. Generally, the larger the page size, the larger the working set size. A
program’s working set size determines whether it will run well under any given paging system.
If the working set size is larger than the real memory allocated to page frames, then there will
be an excessive number of page faults. The system will start thrashing, spending its time
swapping pages from main memory to secondary storage and back but making little progress
executing the software.

To avoid thrashing, do less with your program, add real memory to the system, or optimise the
program’s memory layout using the techniques discussed in the PACKAGES PATTERN.

4. Program Control of Paging

Some programs do not have locality of reference. For example a program might traverse all its
data reading each page exactly once in order. In this case, each page will be paged in only
once, and the best page to replace will be the most frequently or recently used. To help in such
a case, some systems provide an interface so that the programmer can control the paging
system. For example, the interface might support a request that a particular page be paged out.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 38

Alternatively it might allow a request that a particular page be paged in — for example the
program above will know which page will be needed next even before processing the current
page.

Other program code may have real-time constraints. Device drivers, for example, must
typically respond to interrupt events within microseconds. So device driver data must not be
paged out. Most systems support this by ‘tagging’ certain areas of code as with different
attributes. For example, Microsoft’s Portable Executable Format supports Pre-load and
Memory-resident options for its ‘virtual device driver’ executable files [Microsoft 1997]

Example

The following code implements a simple framework to page individual C++ objects.

It’s very difficult indeed to intercept all references to a C++ object without operating system
support – in particular we can’t intercept the ‘this’ pointer in a member function. So it’s a
bad idea to page instances of any C++ class with member functions. Instead we make each
object store its data in a separate data structure and access that structure through special
member functions that control paging. The object itself acts as a PROXY for the data, storing a
page number rather than a pointer to the data. Figure XX below shows a typical scenario:

Page Table Page Frame
Array

Application
Objects

Page Frame
Page Frame
Page Frame
Page Frame

Proxy Object

pageNumber = 2

Proxy Object

pageNumber = 5

Proxy Object
(data on disk)

pageNumber = 3

... etc.

(null)

(null)
(null)

(null)
(null)
(null)
(null)

(null)

Loaded Object Data
Loaded Object Data
Loaded Object Data
Loaded Object Data

Page Buffers

Figure 16: Objects in memory for the Paging Example

The Page Table optimises access to the data in RAM: if its entry is non-null for a particular
page, that page is loaded in RAM and the application object can access its data directly. If an
application object tries to access a page with a null Page Table entry, it means that object’s
data isn’t loaded. In that case the paging code will save or discard an existing page frame and
load that object’s data from disk.

1. Example Client Implementation

Here’s an example client implementation that uses the paging example. It’s a simple bitmap
image containing just pixels. Other paged data structures could contain any other C++
primitive data types or structs, including pointers to objects (though not pointers to the paged
data structure instances, of course, as these will be paged out).

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 39

typedef char Pixel;

class BitmapImageData {
 friend class BitmapImage;
 Pixel pixels[SCREEN_HEIGHT * SCREEN_WIDTH];
};

The PROXY class, BitmapImage, derives its paging functionality from the generic
ObjectWithPagedData. The main constraint on its implementation is that all accesses to the
data object must be through the base class GetPagedData functions, which ensure that the data
is paged into RAM. It accesses these through functions to cast these to the correct type:

class BitmapImage : public ObjectWithPagedData {
private:
 BitmapImageData* GetData()
 { return static_cast<BitmapImageData*>(GetPagedData()); }
 const BitmapImageData* GetData() const
 { return static_cast<const BitmapImageData*>(GetPagedData()); }

The constructor must specify the PageFile object and initialise the data structure. Note that
all these functions can be inline:

public:
 BitmapImage(PageFile& thePageFile)
 : ObjectWithPagedData(thePageFile) {
 memset(GetData(), 0, sizeof(BitmapImageData));
 }

And all functions use the GetData functions to access the data. Note how the C++ const-
correctness ensures that we get the correct version of the data function; non-const accesses to
GetData() will set the ‘dirty bit’ for the page so it gets written back to file when paged out.

 Pixel GetPixel(int pixelNumber) const {
 return GetData()->pixels[pixelNumber];
 }
 void SetPixel(int pixelNumber, Pixel newValue) {
 GetData()->pixels[pixelNumber] = newValue;
 }
};

And that’s the full client implementation. Simple, isn’t it?

To use it we need to set up a page file – here’s one with just four page buffers:
PageFile pageFile("testfile.dat", sizeof(BitmapImageData), 4);

And then we can use can use BitmapImage as any other C++ object:
BitmapImage* newImage = new BitmapImage(pageFile);
newImage->SetPixel(0, 0);
delete newImage;

2. Overview of the Paging Framework

 Figure XXX below shows the logical structure of the Paging Framework using UML notation
[Fowler and Scott 1997]. The names in normal type are classes in the framework; the others
are implemented as follows:

• Page Table Entry is a entry in the pageTable pointer array.
• Page in RAM is a simple (void*) buffer.
• Page on Disk is a fixed page in the disk file.

• Client Implementation is any client class, such as the BitmapImage class above.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 40

Client
Implementation

Page
File

Page in
RAM

Page
Frame

Page Table
Entry dirty: Boolean

1

1

11

11

0,1

*

*

*
[Seq]

Free List

0,1 1

1

1

Object With
Paged Data

Page
on Disk

Figure 17: UML Diagram: Logical structure of the object paging system

The page frames and page table are a FIXED DATA STRUCTURE, always occupying the same
memory in RAM.

3. Implementation of ObjectWithPagedData

ObjectWithPagedData is the base class for the Client implementation classes. It contains only
the page number for the data, plus a reference to the PageFile object. This allows us to have
several different types of client object being paged independently.

class ObjectWithPagedData {
private:
 PageFile& pageFile;
 const int pageNumber;

All of its member operations are protected, since they’re used only by the client
implementations. The constructor and destructor use functions in PageFile to allocated and
free a data page:

ObjectWithPagedData::ObjectWithPagedData(PageFile& thePageFile)
 : pageFile(thePageFile),
 pageNumber(thePageFile.NewPage())
{}

ObjectWithPagedData::~ObjectWithPagedData() {
 pageFile.DeletePage(pageNumber);
}

We need both const and non-const functions to access the paged data. Each ensures there’s a
page frame present, then accesses the buffer; the non-const version uses the function that sets
the dirty flag for the page frame:

const void* ObjectWithPagedData::GetPagedData() const {
 PageFrame* frame = pageFile.FindPageFrameForPage(pageNumber);
 return frame->GetConstPage();
}

void* ObjectWithPagedData::GetPagedData() {
 PageFrame* frame = pageFile.FindPageFrameForPage(pageNumber);
 return frame->GetWritablePage();
}

3. Implementation of PageFrame

A PageFrame object represents a single buffer of ‘real memory’. If the page frame is ‘In Use’,
a client object has accessed the buffer and it hasn’t been saved to disk or discarded. The
member currentPageNumber is set to the appropriate page if the frame is In Use, or else to
INVALID_PAGE_NUMBER. PageFrame stores the ‘dirty’ flag for the buffer, and sets it when any
client accesses the GetWritablePage function.

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 41

class PageFrame {
 friend class PageFile;

private:
 enum { INVALID_PAGE_NUMBER = -1 };
 bool dirtyFlag;
 int currentPageNumber;
 void* bufferContainingCurrentPage;

The constructor and destructor simply initialise the members appropriately:
PageFrame::PageFrame(int pageSize)
 : bufferContainingCurrentPage(new char[pageSize]),
 dirtyFlag(false),
 currentPageNumber(PageFrame::INVALID_PAGE_NUMBER)
{}

PageFrame::~PageFrame() {
 delete [] (char*)(bufferContainingCurrentPage);
}

GetConstPage and GetWritablePage provide access to the buffer:
const void* PageFrame::GetConstPage() {
 return bufferContainingCurrentPage;
}

void* PageFrame::GetWritablePage() {
 dirtyFlag = true;
 return bufferContainingCurrentPage;
}

And the other two member functions are trivial too:
int PageFrame::PageNumber() {
 return currentPageNumber;
}
bool PageFrame::InUse() {
 return currentPageNumber != INVALID_PAGE_NUMBER;
}

4. Implementation of PageFile

The PageFile object manages all of the important behaviour of the paging system. It owns the
temporary file, and implements the functions to swap data buffers to and from it.

PageFile’s main structures are as follows:

pageTable is a vector, with an entry for each page in the page file. These entries
are null if the page is swapped to secondary storage, or point to a
PageFrame object is the page is in RAM.

pageFrameArray contains all the PageFrame objects. It’s an array to make it easy to
select one at random to discard.

listOfFreePageNumbers contains a queue of pages that have been deleted. We cannot
remove pages from the page file, so instead we remember the page
numbers to reassign when required.

So the resulting private data is as follows:
class PageFile {
 friend class ObjectWithPagedData;
private:
 vector<PageFrame*> pageTable;
 vector<PageFrame*> pageFrameArray;
 list<int> listOfFreePageNumbers;
 const int pageSize;
 fstream fileStream;

PageFile’s constructor must initialise the file and allocate all the FIXED DATA STRUCTURES. It
requires a way to abort if the file open fails; this example simply uses a variant of the ASSERT
macro to check:

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 42

PageFile::PageFile(char* fileName, int pageSizeInBytes, int nPagesInCache)
 : fileStream(fileName,
 ios::in| ios::out | ios::binary | ios::trunc),
 pageSize(pageSizeInBytes) {
 ASSERT_ALWAYS(fileStream.good());
 for (int i = 0; i<nPagesInCache; i++) {
 pageFrameArray.push_back(new PageFrame(pageSize));
 }
}

The destructor tidies up memory and closes the file. A complete implementation would delete
the file as well:

PageFile::~PageFile() {
 for (vector<PageFrame*>::iterator i = pageFrameArray.begin();
 i != pageFrameArray.end(); i++)
 delete *i;
 fileStream.close();
}

The function NewPage allocates a page on disk for a new client object. It uses a free page on
disk if there is one, or else allocates a new pageTable entry and expands the page file by
writing a page of random data to the end.

int PageFile::NewPage() {
 int pageNumber;
 if (!listOfFreePageNumbers.empty()) {
 pageNumber = listOfFreePageNumbers.front();
 listOfFreePageNumbers.pop_front();
 } else {
 pageNumber = pageTable.size();
 pageTable.push_back(0);
 int newPos = fileStream.rdbuf()->pubseekoff(0, ios::end);
 fileStream.write(
 (char*)pageFrameArray[0]->bufferContainingCurrentPage,
 PageSize());
 }
 return pageNumber;
}

The corresponding DeletePage function is trivial:
void PageFile::DeletePage(int pageNumber) {
 listOfFreePageNumbers.push_front(pageNumber);
}

The function FindPageFrameForPage assigns a PageFrame for the given page number and
ensures that the page is in RAM. If there’s already a PageFrame for the page, it just returns
the pointer; otherwise it finds a PageFrame and fills it with the requested page from disk.

PageFrame* PageFile::FindPageFrameForPage(int pageNumber) {
 PageFrame* frame = pageTable[pageNumber];
 if (frame == 0) {
 frame = MakeFrameAvailable();
 LoadFrame(frame, pageNumber);
 pageTable[pageNumber] = frame;
 }
 return frame;
}

The function MakeFrameAvailable assigns a frame by paging out or discarding an existing
page, chosen at random.

PageFrame* PageFile::MakeFrameAvailable() {
 PageFrame* frame = pageFrameArray[(rand() * pageFrameArray.size()) /
 RAND_MAX];
 if (frame->InUse()) {
 SaveOrDiscardFrame(frame);
 }
 return frame;
}

Paging Pattern UNTITLED by Weir, Noble

© 1999 Charles Weir, James Noble Page 43

The function that provides the meat of the paging algorithm is SaveOrDiscardFrame. This
writes out the page to the corresponding location in file – if necessary – and resets the page
table entry.

void PageFile::SaveOrDiscardFrame(PageFrame* frame) {
 if (frame->dirtyFlag) {
 int newPos = fileStream.rdbuf()->pubseekoff(frame->PageNumber() *
 PageSize(), ios::beg);
 fileStream.write((char*)frame->bufferContainingCurrentPage,
 PageSize());
 frame->dirtyFlag = false;
 }
 pageTable[frame->PageNumber()] = 0;
 frame->currentPageNumber = PageFrame::INVALID_PAGE_NUMBER;
}

And finally, the corresponding function to load a frame is as follows:
void PageFile::LoadFrame(PageFrame* frame, int pageNumber) {
 int newPos = fileStream.rdbuf()->pubseekoff(pageNumber * PageSize(),
 ios::beg);
 fileStream.read((char*)frame->bufferContainingCurrentPage, PageSize());
 frame->currentPageNumber = pageNumber;
 }

v v v

Known Uses
Almost every modern disk operating system provides paged virtual memory, including most
versions of UNIX including LINUX, Mac OS, and MS Windows [Goodheart 1994; Card,
Dumas, Mével 1998, Microsoft 1997]

OO Databases almost all use some form of object paging. ObjectStore uses the UNIX (or NT)
paging support directly, but replaces the OS-supplied paging drivers with drivers that suit the
needs of OO programs with persistent data [Chaudhri 1997].

Infocom games implemented a paged interpreter on machines like Apple-IIs and early PCs,
paging main memory to floppy disks [Blank and Galley 1995]. This enabled games to run on
machines with varying sizes of memory — although of course games would run slower if there
was less main memory available. The LOOM system implemented paging in Smalltalk for
Smalltalk [Kaehler and Krasner 1983].

See Also
The other patterns in this chapter — PROCESSES, DATA FILES, PACKAGES, and RESOURCE FILES—
provide alternatives to this pattern. Paging can also use COPY ON WRITE to optimise access to
read-only storage, and can be extended to support SHARING. System Memory is a global
resource, so some operating systems implement CAPTAIN OATES, discarding segments from
different processes rather than from the process that requests a new page.

An INTERPRETER [Gamma et al 1995] can make PAGING transparent to user programs. VIRTUAL

PROXIES and BRIDGES [Gamma et al 1995], and ENVELOPE/LETTER or HANDLE/BODY [Coplien
1994] can provide paging for objects without affecting the objects’ client interfaces.
