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Major Technique: Small Architecture
How can you manage memory use across a whole system?

Memory limitations restrict entire systems

Systems are made up of many components

Each component can be fabricated by a different team.
Components' memory requirements can change dynamically.

A system’s memory consumption is a global concern. Working well in limited memory isn't a
feature that you can incorporate into your program in isolation: you can’'t ask a separate team of
programmers to add code your system hoping to reduce its memory requirements. Rather,
memory constraints cross-cut the design of your system, affecting every part of it. Thisiswhy
designing software for systems for limited memory is difficult. [Buschmann, Meunier, Rohnert,
Sommerlad, and Stal, 1996; Shaw and Garlan 1996; Bass, Paul, and Kazman 1998; Bosch
2000].

For example, the Strap-1t-On wrist-top PC’s has an email application supporting text in a
varigty of fonts. Unfortunately in early implementations it cached every font it ever loaded, to
improve performance there; but stored every email compressed, threw away attachments and
crashed if memory ran out loading a font, giving poor new performance and awful usability.
There' s ho sense in one function limiting its memory use to a few hundred bytes when another
part of the program wastes megabytes, and then brings the system down when it fails to receive
them.

Y ou could simply design your system as a monalithic single component: a“big ball of mud”
[Foote and Y oder 2000]. Tempting though this approach might be, it tends to be unsatisfactory
for any but the simplest systems, for several reasons. it’s difficult to split the development of
such a system between different programmers, or different programming teams; the resulting
system will be difficult to understand and maintain, since every part of the system can affect
every other part; and you loose any possibility of buying in existing reusable components.

To keep control over your system, you can construct it from components that you can design,
build, and test independently. Components can be reused from earlier systems, purchased from
external suppliers, or built new; some may need specialised skills to develop; some may even be
commercially viablein their own right. Each component can be assigned to a single team, to
avoid several teams working on the same code [ Szyperski 1999].

These components may be of many different kinds, and interact in many different ways. source
libraries to compile into the system; object libraries that must be compiled into an executable;
dynamic-linked libraries to load at run-time; run-time objects in separate address-spaces using
frameworks like CORBA, Java Beans or ActiveX; or simply separate executables running in
their own independent process. All are logically separate components, and communicate, if they
communicate at all, through interfaces.

Unfortunatdly, separating a program into components doesn’t reduce its memory use. Thewhole
systems’ memory requirements will be the sum of the memory required by each component.
Furthermore, the memory requirements for each component, and so for the whole system, will
change dynamically as the system runs. Even though memory consumption affects the
architecture globally, it is still important that components can be treated separately as much as
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possible. How can you make the system use memory effectively, and give the best serviceto its
users, in asystem s divided into components?

Therefore: Make every component responsible for its own memory use.

A system’s architecture is more than just the design of its high-level components and their
interconnections: it also defines the system'’ s architectural strategies — the palicies, standards
and assumptions common to every component [Bass et al 1998; Brooks 1982]. The
architecture for a system for limited memory must describe palicies for memory management
and ensure that each component’s allocations are feasible in the context of the systemasa
whole.

In a system for limited memory, this means that each individual component must take explicit
responsibility for implementing this policy: for managing its own memory use. In particular,
you should take care to design SMALL DATA STRUCTURES that require the minimum memory to
store the information your system needs.

Taking responsibility for memory is quite easy where a component allocates memory statically
(FIxep ALLOcATION); a component simply owns all the memory that is fixed insideit. Wherea
component allocates memory dynamically from a heap (VARIABLE ALLOCATION) it iS more
difficult to assign responsibility; the heap is a global resource. A good start isto aim to make
every dynamically allocated object or record be owned by one component at all times. [Cargill
1996]. You may need to implement a MemoRy LimiT or allocate objects using PooLED
ALLocATIoN for a component to contral its dynamic memory allocation. Where components
exchange objects, you can use SMALL INTERFACES t0 ensure some component always takes
responsibility for the memory required for the exchange.

A system architecture also needs to set policies for mediating between components' competing
memory demands, especially when thereislittle or no unallocated memory. You should ensure
that components suffer only PARTIAL FAILURE When their memory demands cannot be met,
perhaps by sacrificing memory from low priority components (CAPTAIN OATES) so that the
system can continue to operate until more memory becomes available.

For example, the software architecture for the Strap-1t-On PC defines the Font Manager and the
Email Display as separate components. The software architecture also defines a memory
budget, constraining reasonable memory use for each component. The designers of the Font
Manager implemented a MEMORY LimIT to reduce their font cache to a reasonable size, and the
designers of the Email Display component discovered they could get much better performance
and functionality than they had thought. When the Email application displays a large email, it
uses the SwALL INTERFACE Of the Font Manager to reduce the size of the Font Cache. Similarly,
when the system is running short of memory the font cache discards any unused items (CAPTAIN
OATES).

Consequences

Handling memory issues explicitly in a program’s architecture can reduce the program’s
memory reguirements, increase the predictability of its memory use, and may make the
program more scalable and more usable.

A consistent approach to handling memory reduces the programmer effort required since the
memory policies do not have to be re-determined for each component. Individual modules and
teams can co-ordinate smoothly to provide a consistent global effect, so users can anticipate the
final system’s behaviour when memory is low, increasing usability.
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In general, explicitly describing a system’ s architecture increases its design quality improving
maintainability.

However: designing a small architecture takes programmer effort, and then ensuring components are
designed according to the architecture s rules takes programmer discipline. Making memory
an architectural concern moves it from being alocal issue for individual components and teams
to aglobal concern, involving the whole project. For example, developers may try to minimise
their components memory requirements at the expense of other components produced by other
teams.

Incorporating external components can require large amounts programmer effort if they do not
meet the standards set by the system architecture — you may have to re-implement components
that cannot be adapted.

Designing an architecture to suit limited memory situations can restrict a program’s scalability
by imposing unnecessary restrictions should more memory become available.

o o o
Implementation

The main ideas behind this pattern are ‘ consistency’ and ‘ responsibility’. By splitting up your
system into separate components you can design and build the system piece by piece; by having
a common memory policy you ensure that the resulting pieces work together effectively.

The actual programming mechanism used to represent components is not particularly important.
A component may be a class, a package or a namespace, a separate executable or operating
system process, a component provided by middieware like COM or CORBA, or an ad-hoc
collection of objects, data structures, functions and procedures. In an object-oriented system, a
component will generally contain many different objects, often instances of different classes,
with one or more objects acting as FACADES to provide an interface to the whole component.

Here are two further issues to consider when designing interfaces for components in small
systems:

1. Tailorability.

Different clients vary in the memory requirements they place on other components that they use.
Thisis especially the case for components that are designed to be reusable; such components
will be used in many different contexts, and those contexts may have quite different memory
reguirements.

A component can address this by including parameters to tailor its memory useinitsinterface.
Clients can adjust these parameters to adapt the component to fit its context. Components using
Fixep ALLocATION, for example, have to provide creation-time parameters to choose the
number of items they can store. Similarly, components using VARIABLE ALLOCATION can
provide parameters to tune their memory use, such as maximum capacity, initial allocation, or
even the amount of free space (in a hash table, for example, leaving free space can increase
lookup performance). Components can also support operations to control their behaviour
directly, such as requesting a database to compact itsdf, or a cache to empty itsdlf.

For example, the Java vector class has several methods that control its memory use. Vectors can
be created with sufficient memory to hold a given number of items (say 10):

Vector v = new Vector (10);
This capacity can be increased dynamically (say to store twenty items):

v. ensur eCapaci ty(20);
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The capacity can also be reduced to provide only enough memory for the number of ementsin
the container, in this case one object.

v. addEl ement ( new Cbject() );

v.trimroSize();
Allocating correctly sized structures can save a surprisingly large amount of memory and
reduce the load a component places on alow level memory allocator or garbage collector. For
example, imagine a Vector that will be used to store 520 itemsinserted oneat atime. The
vector classinitially allocates enough space for 8 dements; when that is exhausted, allocates
twice as much space asit is currently using, copies its current eements into the new space, and
deallocates the old space. To store 520 dements, the vector will resize itself seven times, finally
allocating almost twice the required memory, and having allocated about four times as much
memory intotal. In contrast, initialising the vector with 520 eements would have required one
call to the memory system and allocated only as much memory as required [Soukup 1994].

2. Make clientsresponsible for components memory allocation.

Sometimes a component needs to support several radically different policies for allocating
memory — some clients might want to use PooLED ALLocATION for each object allocated
dynamically within the package; others might prefer a MEMORY LiMIT oF t0 use MEMORY
DiscARrD; and still others might want the simplicity of allocating objects directly from the
system heap. How can you cater for all of these with a single implementation of the
component?

2.1. Callbacks to manage memory. A simple approach is to require the component to call
memory management functions provided by the client. 1n non-OO environments, for example,
you can make the component call a function supplied by its client, and linking the client and
component together. In C, you might use function pointers, or make the component declare a
function prototypes to be implemented by the library environment. For example, the Xt
Window System Toalkit for the X Window System supports a callback function, the Xal I oc
function hook; clients may provide a function to do the memory allocation (and of course,
another function to do the memory freeing) [Gilly and O’ Reilly 1990].

2.2. Memory Strategy. In an object-oriented environment, you can apply the STRATEGY

pattern: define an interface to a family of allocation algorithms, and then supply the component
with the algorithm appropriate for the context of use. For example, in C++, a strategy class can
simple provide operations to allocate and free memory:

class MenoryStrategy {
virtual char* Alloc( size_t nBytes ) = 0; // returns null when exhausted.
virtual void Free( char* anltem ) = O;
H
Particular implementations of the Meror ySt r at egy class then implement a particular strategy:
aPool edSt r at egy implements POOLED ALLOCATION, aLi ni t St rat egy appliesa MEMORY
LIMIT; &Tenpor ar yHeapSt r at egy implements MEMoRY DiscARD; and a HeapSt r at egy sSimply
delegates the Al | oc and Fr ee operations straight to the system mal | oc and f r ee functions.

An alternative C++ design uses compile-time template parameters rather than runtime objects.
The C++ STL collection and string templates accept a class parameter (called Al | ocat or) that
provides allocation and freeing functions [Stroustrup 1997]. They also provide a default
implementation of theal | ocat or that uses normal heap operations. So the definition of the
STL ‘set’ template classis:

tenpl ate <cl ass Key, class Conpare = | ess<Key>,
class Allocator = allocator> class set;
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Note how the Al | ocat or template parameter defaultsto al | ocat or, the strategy class that
uses normal heap allocation.

Specialised Patterns

The following sections describe six specialised patterns that describing ways architectural
decisions can reduce RAM memory use. The figure below shows how they interrelate. Two
other patternsin this book are closdly related to the patterns in this chapter, and these patterns
areshown in grey.
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This chapter contains the following patterns:

MEMOoRY LimIT enforces a fixed upper bound on the amount of memory a component can
allocate.

SMALL INTERFACES between components are designed to manage memory explicitly, minimising
the memory required for their implementation.

PARTIAL FAILURE ensures a component can continuein a ‘ degraded mode’, without stopping its
process or losing existing data, when it cannot allocate memory.

CAPTAIN OATESImproves the overall performance of a system, by surrendering memory used by
less important components when the system is running low on memory.

READ-ONLY MEMORY can be used to store components that do not need to be modified, in
preference to more constrained and expensive main memory.

Hooks allow information stored in READ-ONLY MEMORY (or shared between components) to
appear to be changed

Known Uses

Object-oriented APIs designed to support different memory strategies include the C++ standard
template library [Stroustrup 1997] and the Booch components [Booch 1987]. These libraries,
and to a lesser extent the standard Java and Smalltalk collection classes, also provide
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parameters that adjust components’ strategies, for example, by preallocating the correct amount
of memory to hold an entire structure.

See Also

Many small architectures take advantage of SECONDARY STORAGE to reduce requirements for
main memory. Architectures can also design SMALL DATA STRUCTURES to minimise their
memory use, and encourage SHARING Of code and data between components.

Tom Cargill’s patterns for Localized Ownership [Cargill 1996] describe how you can ensure
every object is the responsibility of precisely one component at all times. The HyPOTH-A-SIZED
CoLLEcTION pattern [Auer and Beck 1996] describes how collections should be created with
sufficient capacity to meet their clients needs without extra allocations.

Softwar e Requirements & Specifications [Jackson 1995] and Software Architecture [ Shaw and
Garlan 1996] describe ways to keep a coherent architecture while dividing an entire system into
components. Software Architecture in Practice [Bass et a 1998] describes much about
software architecture; Design and Use of Software Architectures [Bosch 2000] is a newer book
that focuses in particular on producing product-lines of similar software systems. Patternsin
Software Architecture has a number of architecture-level patterns to help design whole systems
and is well worth reading [Buschmann et al 1996].

The Practice of Programming [Kernighan and Pike, 1999], the Pragmatic Programmer [Hunt
and Thomas 2000] and the High-Level and Process Patter ns from the Memory Preservation
Society [Noble and Weir 2000] describe techniques for estimating the memory consumption of a
system’s components, and managing those estimates throughout a development project.
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Memory Limit
Also Known As:. Fixed-sized Heap, Memory Partitions

How can you share out memory between multiple competing components?
Your system contains many components, each with its own demands on memory.
Components' memory requirements change dynamically as the program runs.
If one component hogs too much memory, it will prevent others from functioning.
Y ou can define reasonable upper bounds on the memory required for each task.

As part of designing a SWALL ARCHITECTURE, you will have divided up your system into
architectural components, and made each component responsible for its own memory use. Each
components’ memory demands will change as the program runs, depending on the overall kind
of load being placed on the system. |If access to memory is unrestricted, then each component
will try to allocate as much memory as it might need, irrespective of the needs of other
components. As other components also allocate memory to tackle their work, the system asa
whole may end up running out of memory.

For example, the Strap-1t-On’'s Virtual Redlity “ Stair Wars 1" game has several components:
virtual reality display, voice output, music overview, voice recognition, not to mention the
artificial intelligence brain co-ordinating the entire game plan. Each of these tasks is capable of
using as much memory as it receives, but if every component tries to alocate a large amount of
memory there will not be enough to go round. Y ou must apportion the available memory
sensibly between each component.

Y ou could consider implementing the Captain Oates pattern, allowing components low on
memory to steal it from components with abundant allocations. Captain Oates relies on the
goodwill of component programmers to release memory, however, and can be difficult and
complex to implement.

Y ou could also consider budgeting components’ memory usein advance. Just planning memory
consumption is also insufficient; however, unless there is some way to be sure that components
will obey the plans. Thisis trivial for components that use Fixep ALLocATION exclusively, but
for othersit can be difficult to modd their dynamic behaviour to be sure they will not disrupt
your plans.

Therefore: Set limits for each component and fail allocations that exceed the limits.
There are three steps to applying the memory limit pattern.

1. Keep an account of the memory currently allocated by each component. For example, you
might modify a component’s memory allocation routine to increase a memory counter when
allocating memory, and decrease the counter when deall ocating memory.

2. Ensure components cannot allocate more memory then an allotted limit. Allocation
operations that would make a component exceed its limit should fail in exactly the same
way that they would fail if there were no more memory available in the system.
Components should support PARTIAL FAILURE S0 that they can continue running even when
they are at the limit.

3. Set thelimits for each component, ideally by experimenting with the program and
examining the memory use counters for each component. Setting the limits last may seem to
be doing things backwards, but, in practice, you will have to revise limits during
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development, or alternatively allow users to adjust them to suit their work. So, build the
accounting mechanisms first, experiment gathering usage information, and then set the
memory use policies that you want enforced.

Should the sum of the limits for each component be equal or greater than the total available?
The answer depends on whether all the tasks are likely to be using their maximum memory limit
simultaneously. Thisis unlikely in practice, and the main purpose of the Memory Limit pattern
isto prevent a single component from hogging all the memory. It is generally sufficient to
ensure that the limit on each task is a reasonable fraction of the total memory available.

Note that it’s only worth implementing a limit for components that make variable demands on
memory. A memory limit provides little benefits for components where most data structures
use Fixep ALLocATIoN and the memory use doesn’t vary significantly with time.

Inthe‘Stair Wars' program, for example, the artificial intelligence brain component uses
memory roughly in proportion to the number of hostile and friendly entities supported. By
experimenting with the game, the developers determined a maximum number of such entities,
and then adjusted brain component’s memory limit to provide enough memory to support the
maximum. On the other hand, the screen display component allocates a fixed amount of
memory, so Stair Wars doesn’t apply an extra memory limit for this component.

Consequences

Because there are guaranteed limits on the memory use of each component, you can test each
one separately, while remaining sure that it will continue to work the same way in the final
system. Thisincreases the predictability of the system.

By examining the values of the memory counters, it’s easy to identify problem areas, and to see
which components are failing due to insufficient memory at run-time, increasing the
localisation of the system.

Implementing a simple memory counter takes only a small amount of programmer effort.

However: Some tasks may fail due to lack of memory while others are still continuing normally; if the
tasks interact significantly, this may lead to unusual error situations which are difficult to
reproduce and test. A component can fail becauseit’s reached its memory limit even when
thereis plenty of memory in the system; thus the pattern can be wasteful of memory. Most
simple memory counters mechanisms don’t account for extra wastage due to fragmentation (see
the MEMORY ALLocATION chapter). On the other hand, more complex operating system
mechanisms such as separate heaps for each component tend to increase this same
fragmentation wastage.

Implementation
There are several alternative approaches to implementing memory limits.

1. Intercepting Memory M anagement Operations.

In many programming languages, you can intercept all operations that allocate and release
memory, and modify them to track the amount of memory currently allocated quite simply.
When the count reaches the limit, further memory allocations can fail until deallocations return
the count below the limit. In C++, for example, you can limit the total memory for a process by
overriding the four global new and del et e operators [Stroustrup 1995].
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A memory counter doesn’'t need to be particularly accurate for this pattern to work. It can be
sufficient to implement a count only of the major memory allocations: large buffers, for
example. If smaller items of allocated memory are allocated in proportion to these larger items,
then this limit indirectly governs the total memory used by thetask. For example, the different
entities in the Stair Wars program each use varying amounts of memory, but the overall
memory useis roughly proportional to the total humber of entities, so limiting them
implemented an effective memory limit.

In C++ you can implement a more localised memory limit by overriding thenew and del et e
operators for a single class — and thus for its derived classes. This approach also has the
advantage that different parts of the same program can have different memory limits, even when
memory is allocated from a single heap [Stroupstrup 1997].

2. Separate Heaps.

Y ou can make each component use a separate memory heap, and manage each heap separately,
restricting their maximum size. Many operating systems provide support for separate heaps
(notable Windows and Windows CE) [Microsoft 97, Boling 1998].

3. Separ ate processes.

Y ou can make each component an individual process, and use operating system or virtual
machine mechanisms to limit each component’s memory use. EPOC, and most versions of Unix
allow you to specify a memory limit for each process, and the system prevents processes from
exceeding these limits. Using these limits requires little programmer effort, especially the
operating systems also provides tools that can monitor processes memory use so that you can
determine appropriate limits for each process. Of course, you have to design or whole system so
that separate components can be separate processes — depending on your system, this can be
trivial or very complex.

Many operating systems implement heap limits using virtual memory. They allocate the full
size heap in the virtual memory address space (see the PAGING PATTERN); the memory manager
maps this to real memory only when the process chooses to access each memory block. Thus
the heap sized is fixed in virtual memory, but until it is used there s no real memory cost at all.
The disadvantage of this approach is that very few virtual memory systems can detect free
memory in the heap and restore the unused blocks to the system. So in most VM systems a
process that uses its full heap will keep the entire heap allocated from then on.

Examples

Thefollowing C++ code restricts the total memory used by aMenor yResri ct edd ass and its
subclasses. Exceeding the limit triggers the standard C++ out of memory exception,
bad_al | oc. Herethetotal limit is specified at compiletime, asLI M T_I N_BYTES:

class MenmoryRestrictedC ass {
public:
enum { LIMT_I N BYTES = 10000 };
static size_t total MenoryCount;

voi d* operator new ( size_t aSize );
voi d operator delete( void* anltem size_t aSize );

b
size_t MenoryRestrictedd ass::total MenoryCount = O;

The class must implement an oper at or newthat checks the limit and throws an exception:
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voi d* MenmoryRestrictedCl ass::operator new ( size_t aSize ) {
if ( total MenobryCount + aSize > LIMT_I N_BYTES )
throw ( bad_alloc() );
tot al MenoryCount += aSi ze;
return malloc( aSize );
}
And of coursethe corresponding del et e operator must reduce the memory count again:

voi d MenoryRestrictedC ass::operator delete( void* anltem size_t aSize ) {
total MenoryCount -= aSi ze;
free( (char*)anltem);

For a complete implementation we' d also need similar implementations for the array versions of
the operators [Stroustrup 1995].

In contrast, Java does not provides allocation and deletion operations in the language. It is
possible however to limit the number of instances of a given class by keeping a static count of
the number of instances created. Java has no simple deallocation call, but we can use
finalisation to intercept deallocation. Note that many Java virtual machines do not implement
finalisation efficiently (if at all), so you should consider this code as an example of one possible
approach, rather than as recommended good practice [Gosling et al 1996].

Thefollowing class permits only a limited number of instances. The class counts the number of
its instances, increasing the count when a new object is constructed, and decreasing the count
when it is finalized by the garbage collector. Now, since objects can only be finalized when the
garbage collector runs, at any given time there may be some garbage objects that have not yet
been finalised. To ensure we don't fail allocation unnecessarily, the constructor does an explicit
garbage collection before throwing an exception if we are close to the limit.

cl ass RestrictedC ass

static final int maxNunber Of | nstances = 5;
static int nunber Ol nstances = O;

public Restrictedd ass() {
nurmber Of | nst ances++;
if (nunber O I nstances > maxNunber O | nst ances) {
System gc();

if (nunber O I nstances > maxNunber O | nst ances) {
t hrow new Qut Of MenoryError ("Restrictedd ass can only have " +
maxNunmber Of | nstances + " instances");
}
}
There' s a dight issue with checking for memory in the constructor: even if we throw an
exception, the object is till created. Thisis not a problem in general, because the object will

eventually be finalized unless one of the superclass constructors stores a reference to the object.
The actual finalisation codeistrivial:

public void finalize() {
--nunber O | nst ances;
}

Known Uses
By default, UNIX operating systems put a memory limit on each user process [Card et al 1998].

This limit prevents any one process from hogging all the system memory as only processes with
system privileges can override this limit. The most common reason for a process to reach the
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limit is a continuous memory leak: after a process has run for along time a memory request will
fail, and the process will terminate and be restarted.

EPOC associates a heap with each thread, and defines a maximum size or each heap. Thereis
adefault, very large, limit for applications, but server threads (daemons) are typically created
with rather smaller limits using an overloaded version of the thread creation function

RRhr ead: : Cr eat e [Symbian 1999]. The EPOC culture places great importance on avoiding
memory leaks, so the limit servesto limit the resources used by a particular part of the system.
EPOC servers are often invisible to users of the system, so it is important to prevent them from
growing too large. If a server does reach the memory limit it will do a PARTIAL FAILURE,
abandoning the particular request or client session that discovered the problem rather than
crashing the whole server [Tasker et al 2000].

Microsoft Windows CE and Acorn Archimedes RICS OS allow users to adjust the memory
limits of system components at runtime. Windows CE imposes a limit on the amount of memory
used for programs, as against data, and RISC OS imposes individual limits on every component
of the operating system [Boling 1998, RISC OS 2000].

Java virtual machines typically provide run-time flags to limit the total heap size, so you can
restrict the size of a Java process [Lindholm and Yelin 1999]. The Real-Time Specification for
Javawill support limits on the allocation of memory within the heap [Bolldla et al 2000].

See Also

Sinceit’s reasonably likdly atypical process will reach the limit, it’s better to suffer a PARTIAL
FaiLURE rather than failing the whole process. Using only FiXEp ALLOCATION (O POOLED
ALLOCATION) isasimpler, but less flexible, technique to apportion memory among competing
components.
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Small Interfaces
How can you reduce the memory overheads of component interfaces?

You are designing a SMALL ARCHITECTURE Where every component takes responsibility for
its own memory use.

Your system has several components, which communicate via explicit interfaces.

Interface designs can force components or their clients to allocate extra memory, soldy for
inter-component communication.

Reusable components require generic interfaces, which risk needing more memory than
would be necessary for a specific example.

You are designing a SMALL ARCHITECTURE, and have divided your system into components with
each component responsible for its own memory use. The components collaborate via ther
interfaces. Unfortunately the interfaces themselves require temporary memory to store
arguments and results. Sending a large amount of information between components can require
a correspondingly large amount of memory.

For example, the Strap-1t-On ‘ Spookivity’ ghost hunter’s support application uses a
compressed database in ROM with details of every known ghost matching given specifications.
Early versions of the database component were designed for much smaller RAM databases, so
they implemented a ‘ search’ operation that simply returned a variable sized array of structures
containing copies of full details of all the matching ghosts. Though functionally correct, this
interface design meant that Spookivity required a temporary memory allocation of several
Mbytes to answer common queries — such as “find ghosts that are transparent, whitish, floating
and dead” - an amount of memory simply not available on the Strap-1t-On.

Interfaces can also cause problems for a SwALL ARCHITECTURE by removing the control each
component has over memory allocation. |f an object is allocated in one component, used by
another and finally deleted by athird, then no single component can be responsible for the
memory occupied. In the Spookivity application, although the array of ghost structures was
allocated by the database component it somehow became the responsibility of the client.

Reusable components can make it even more difficult to control memory use. The designer of a
reusable component often faces questions about the trade-offs between memory use and other
factors, such as execution speed or failure modes. For example, a component might pre-allocate
some memory buffers to support fast response during normal processing: how much memory
should it allocate? The answers to such questions depend critically on the system environment;
they may also depend on which client is using the component, or even depend on what the client
happens to be doing at thetime. The common approach — for the designer to use some idea of
an ‘average application to answer such questions — is unlikely to give satisfactory resultsin a
memory limited system.

Therefore: Design interfaces so that clients control data transfer.
There are two main steps to designing component interfaces:

1. Minimise the amount of data transferred across interfaces. The principles of ‘small
interfaces’ [Meyer 1997] and ‘strong design’ [Coplien 1994] say that an interface
should present only the minimum data and behaviour to its client. A small interface
should not transmit spurious information that most components or their clients will not
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need. Y ou can reduce the amount of memory overhead imposed by interfaces by
reducing the amount of data that you need to be transfer across them.

2. Determine how best to transfer the data. Once you have identified the data you need to pass
between components, you can determine how best to transfer it. There are many
different mechanisms for passing data across interfaces, and we discuss the most
important of them in the Implementation section.

For example, later versions of the Spookivity Database ‘ search’ method returned a database
ITERATOR Object [Gamma et al 1995]. Theiterator’s ‘get Next’ function returned a reference
toa‘'Ghost Det ai | s’ result object, which provided methods to return the data of each ghost in
turn. This also allowed the implementers of the database component to reuse the same

Ghost Det ai | s object each time; their implementation contained only a database 1D, which they
changed on each call. The Ghost Det ai | s methods accessed their data directly from the high-
speed database. Therevised interface required only afew bytes of RAM to support, and since
the database is itsdf designed to use iterators there was no cost in performance.

Consequences
By considering the memory requirements for each component’ s interface explicitly, you can
reduce the memory requirements for exchanging information across interfaces, and thus for the
system as awhole. Because much of the memory used to pass information across interfaces is
transient, eiminating or reducing interface’ s memory overheads can make your program’'s
memory use more predictable, and support better real-time behaviour. Reducing inter-
component interface memory requirements reduces the overheads of using more componentsin
adesign, increasing locality and design quality and maintainability.

However: Designing small interfaces requires programmer discipline, and increases team co-
ordination overheads. A memory-efficient interface can be more complex, and so require more
code and programmer effort and increase testing costs. Aswith all designs that save memory,
designing small interfaces may increase time performance.

@, @, @,
0’0 0’0 0’0

Implementation
There are a number of issues and alternatives to consider when using designing interfaces
between componentsin small systems. The same techniques can be used whether information is
passing ‘inward’ from a client to a server, in the same direction as control flow (an efferent flow
[Yourdon and Constantine 1979]), or ‘outward’ from component to client (an afferent flow).

1. Passing data by value vs. by reference.

Data can be passed and returned either by value (copying the data) or by reference (passing a
pointer to the data). Passing data by reference usually requires less memory than by value, and
saves copying time. Java and Smalltalk programs usually pass objects by reference. Passing
references does means that the components are now SHARING the data, so the two components
need to co-operate somehow to manage the responsibility for its memory. On the other hand, in
pass-by-value the receiving components must manage the responsibility for the temporary
memory receiving the value. as well. Pass-by-value is common in C++, which can DiscarD
stack memory.

2. Exchanging memory acr oss inter faces.
There are three common strategies for a client to transfer memory across a component interface:
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L ending —some client’s memory is lent to the supplier component for the duration of the
clients call to the supplier (or longer).

Borrowing —the client gets access to an object owned by the supplier component.

Stealing — the client receives an object allocated by the supplier, and is responsible for its
deallocation.

When information is passed inward the client can often lend memory to the component for the
duration of thecall. Returning information ‘outward” from component to is more difficult.
Although clients can lend memory to a supplier, it is often easier for the client to borrow a
result object from the server, and easier still for the client to steal aresult object and use it
without constraint.

The following section describes and contrasts each of these three approaches. For convenience,
we describe a component that returns a single result object; but the same sub-patterns apply
when a number of objects are returned.

2.1. Lending: The client passes an object into the component method, and the component uses
methods on the object to accessits data. If the client keeps a reference to the result object, it
can access the data directly, or the component can pass it back to the client. For example, the
following Java code sketches how an abject using a word processor component could create a
new document properties object, and pass it to the word processor, which initialises it to
describe the properties of the current document.

Docunent Properties d = new Docunent Properties();

wor dPr ocessor. get Current Docunent Properties( d );

The client can then manipulate the document properties object:

d. get Si ze();
d.getEditTine();

| ong docsi ze
| ong doctine

The client must also release the document properties object when it is no longer useful:
d = null;

because it has kept the responsibility for the document properties object’s memory.

1. Get(d)
Client Object — Provider Object

d: Data

When lending memory to a component, the client manages the allocation and lifetime of the data
object (the document properties in this case), which may be allocated statically, or on the heap
or the stack.

Consider using lending to pass arguments across interfaces when you expect the client to have
aready allocated all the argument abjects, and when you are sure they will need all the results
returned. Making the client own a result object obviously gives a fair amount of power and
flexibility to the client. It does requires the client to allocate a new object to accept the results,
and take care to delete the object when it is not longer needed, requiring programmer discipline.
The component must calculate all the result properties, whether the client needs them or not.
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In C++ libraries a common form of this techniqueis to return the result by value, copying from
temporary stack memory in the component to memory lent by the client.

Another example of lending is where the client passes in a buffer for the component to use. For
examplein the BUFFER SwAP pattern, a component needs to record a collection of objects (e.g.
sound samples) in real-time and return them to the client. The client begins by providing a single
buffer to the main component, and then provides a new empty buffer every timeit receives a
filled one back. [ Sane and Campbd | 1996].

2.2. Borrowing: The component owns a simple or compoasite object, and returns a reference to
that object to the client. The client uses methods on the object to access its data, then signals to
the component when it no longer needs the object. For example, the word processor component

could let its client borrow an object representing the properties of the current document:

Docunent Properties d = wordProcessor. get Docunent Properties();

The client can then manipulate the document properties object:

| ong docsi ze d. get Si ze();
| ong doctinme d.getEditTine();

but must tell the word processor when the properties object is no longer required.

wor dProcessor. rel easeDocunent Properties(d);

1. Get(): d
Client Object : Provider Object
. Release(d)

1.1
Set(1)

d: Data

Like lending, borrowing can be used to transfer data both in to and out of a component. Having
the component own the result object gives maximum flexibility to the component returning the
result. The component can allocate a new data object each time (VARIABLE DATA STRUCTURE),
or it can hold one or more instances permanently (FIxEp DATA STRUCTURE), OF Some
combination of the two.

On the other hand, the component how has to manage the lifetime of the result object, whichiis
difficult if there are several clients or several data objects needed at atime. Alternatively, you
can allocate only one result object statically, and recycleit for invocation. This requires the
client to copy the information immediately it is returned (effectively similar to an ownership
transfer). A static result object also cannot handle concurrent accesses, but thisis fine aslong
asyou are sure there will only ever be one client at atime.

Alternatively, the component interface can provide an explicit ‘release’ method to delete the
result object. Thisisrarer in Java and Smalltalk, as these languages make it clumsy to ensure
that the release method is called when an exception is thrown. Thisis quite common in C++
interfaces, as it allows the component to implement REFERENCE COUNTING on the object, or just
tododel ete this intheimplementation of the Rel ease function. For example, the EPOC
coding style [Tasker et al 2000] is that all interfaces (‘R classes’) must provide a Rel ease
function rather than a destructor. Consider using borrowing when components need to create or
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to provide large objects for their clients, and clients are unlikely to retain the objects for long
periods of time.

2.3. Stealing: The component allocates a simple or compoasite object, and transfers
responsibility for it to the client. The client uses methods on the object to get data, then frees it
(C++) or relies on garbage collection to release the memory. For example, the wordprocessor
can let its client steal a document properties object:

Docunent Properties d = wordProcessor. get Docunent Properties();

alowing the client to useit as necessary,

| ong docsi ze d. get Si ze();
| ong doctine d. get Editlong();

but the client now has the responsibility for managing or deleting the object

d = null;

1. Get(): d
Client Object — Provider Object
N S
%
@/&@ : %
c

This example shows a client stealing an object originally belonging to a component, however,
components can also steal objects belonging to their clients when data is flowing from clients to
components. Transferring responsibility for objects (or ownership of objects) is simpleto
program, and is particularly common in languages such as Java and Smalltalk that support
garbage collection and don't need an explicit del et e operation. In C++ it's most suitable for
variable size structures, such as unbounded strings. However in systems without garbage
collection, this technique can cause memory leaks unless great programmer disciplineis used to
delete every single returned objects. Ownership transfer forces the server to allocate a new
object to return, and this object needs memory. The server must calculate all the properties of
the returned object, whether the client needs them or not, wasting processing time and memory.
Consider using stealing when components need to provide large objects that their clients will
retain for some time after receiving them.

3. Incremental I nterfaces.

It is particularly difficult to pass a sequence or collection of dataitems across aninterface. In
systems with limited memory, or where memory is often fragmented, there may not be enough
memory available to store the entire collection. In these cases, the interface needs to be made
incremental — that is, information is transferred using more than one call fromthe client to a
component, each call transferring only a small amount of information. Incremental interfaces
can be used for both inward and outward data transfer. Clients can either make multiple calls
directly to a component, or an ITERATOR can be used as an intermediate object. Consider using
Iterator Interfaces when large objects need to be transferred across interfaces.

3.1. Client Makes Multiple Calls: The client makes several method calls to the component,
each call loaning a single object for the duration of the call. When all the objects are passed,
the client makes a further call to indicate to the component that it’s got the entire collection, so
it can get on with processing. For example, a client can insert a number of paragraphsinto a
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word processor, calling addPar agr aph to ask the word processor to take each paragraph, and
then pr ocessAddedPar agr aphs to process and format all the new paragraphs.

for (int i = 0; i < numnew paras; i++) {
wor dPr ocessor . addPar agr aph(paras[i]);

V\br dProcessor. processAddedPar agr aphs() ;

2. Take(d1)
4. Take(d2)
Client Object Provider Object
5. DoAction() |

1. new(1

di: Data d2: Data

The client making multiple callsis easy to understand, and so is often the approach chosen by
novice programmers or used in non-OO0 languages. However, it forces the component either to
find away of processing the data incrementally (see DATA CHAINING), Or tO create its own
collection of the objects passed in, requiring further allocated memory. Alternatively the client
can loan the objects for the duration of the processing rather than for each call, but this forces
the client to keep al the data allocated until the DoAct i on operation completes.

To return information from a component incrementally, the client again makes multiple calls,
but the component signals the end of the using a return value or similar.

spooki vity. fi ndGhosts("transparent|dead");
whi | e (spookivity. noreChost sToProcess()) {

ghost Scr een. addDi spl ay(spooki vity. get Next Ghost ());
b

3.2 Passing Data via an Iterator: Rather than make multiple calls, the client may lend an
iterator to the component. The component then accesses further loaned objects via theiterator.
For example, the client can pass an iterator to one of itsinternal collections:

ghost Screen. di spl ayAl | Ghost s(vector O Chosts.iterator());

and the component can use thisiterator to access the information from the client:

voi d displayAl | Ghosts(lterator it) {
while (it.hasNext()) {
di spl ayGhost ((Ghost) it.next());
}

}

Passing in an iterator reverses the control flow, so that the component is now invoking messages
on the client.

Using an iterator is generally more flexible than making multiple calls to a special interface.
The component doesn't have to storeits own collection of objects, sinceit can access them
through theiterator. It'simportant that the interface uses an abstract iterator or abstract
collection class, however; a common interface design error is to use a specific collection class
instead, which constrains the implementation of the client.

3.3. Returning Data with a Writeable Iterator. A writableiterator is an iterator that insert
edementsinto a collection, rather than simply traverse a collection. A writeable iterator
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produced by the client can be used to implement outward flows from component to client, in just
the same way that a normal iterator implements inward flows.

Vector retrievedCGhosts = new Vector();
spooki vity. findGhosts("transparent|dead");
spooki vity.returnAl |l Ghosts(retri evedGhosts. witeablelterator());

Note that at the time of writing, the Java library does not include writeable iterators.

3.4. Returning data by returning an iterator. Alternatively the client may borrow or steal an
iterator object from the component, and access returned values through that:

Iterator it = spookivity.findGhostslterator("transparent|dead");
while (it.hasNext()) {
ghost Screen. di spl ayGhost ((Ghost) it.next());

}
Returning an iterator keeps the control flow from the client to the component, allowing the

iterator to be manipulated by client code, or passed to other client components.

@ @ @
0’0 0’0 0’0

Known Uses

Interfaces are everywhere. For good examples of interfaces suitable for limited memory
systems, look at the APl documentation for the EPOC or PalmOs operating systems [Symbian
1999, Palm 2000].

Operating system file 10 calls have to pass large amounts of information between the system
and user applications. Typically, they require buffer memory to be allocated by the client, and
then read or write directly into their client side buffers. For example, the classic Unix [Ritchie
and Thompson 1978] file system call:

read(int fid, char *buf, int nchars);

reads up to nchar s charactersfromfilefi d into the buffer starting at buf . The buffer is
simply a chunk of raw memory.

EPOC client-server interfaces always use lending, since the server isin a different memory
gpaceto its client, and can only return output by copying it into memory set aside for it within
theclient. This ensures that memory demand is typically small, and that the client ‘s memory
requirements can be fixed at the start of the project.

Many standard interfaces useiterators. For example, the C++ iostreams library uses them
almost exclusively for access to container classes [Stroustrup 1997], and Java’z zl i b
compression library uses iterators (streams) for both input and output.

See Also

Interfaces have to support the overall memory strategy of the system, and therefore many other
memory patterns may be reflected in the interfaces between components.

Interfaces can supply methods to set up simulating a memory failure in the component to allow
ExHAusTION TESTING Of both client and component. Interfaces that return references to objects
owned by the component may SHARE these objects, and may use REFERENCE COUNTING Of CoPY
ONWRITE.

Interfaces, particularly in C++, can enforce constant parameters that refer to READ ONLY
MEemMoRy and thus may not be changed. In other languages, such enforcement is part of the
interface documentation. Where components use RESOURCE FILES, interfaces often specify
strings or resources as resource | Ds rather than structures. Aswel as reducing the amount of
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information passing across the interface, the memory costs of the resource can be charged to the
component that actually instantiates and usesiit.

If the component (or the programming environment) supports MemoRry COMPACTION USINg
handles, then the interface may use handles rather than object references to specify objects in
the component.

The patterns for Arguments and Results [Noble 2000] and Type-Safe Session [Pryce 2000]
describe how objects can be introduced to help design interfaces between. Meyers' Effective
C++ [1998] and Sutter’s Exceptional C++ [2000] describe good C++ interface design. Tony
Simons has described some options using borrowing, copying and stealing for designing C++
classes [Simons 1998].
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Partial Failure
Also known as. Graceful degradation; Feast and Famine.

How can you deal with unpredictable demands for memory?

No matter how much you reduce a program’s memory requirements,
you can still run out of memory.

It is better to fail at atrivial task than to rashly abandon a critical task.
It is more important to keep running that to run perfectly all thetime...
... And much more important to keep running than to crash.

The amount of memory available to a system varies wildly over time.

No matter how much you do to reduce the memory requirements of your program, it can
always run out of memory. You can silently discard data you do not have room to store,
terminate processing with a rude error message, or continue as if you had received the memory
you requested so that your program crashes in unpredictable ways, but you can't avoid the
problem. Implicitly or explicitly, you haveto deal with running out of memory. Ina
‘traditional’ system, low memory conditions are sufficiently rarethat it is not really worth
spending programmer effort dealing with the situation of running out of memory. The default,
letting the program crash, is usually acceptable. After all, there arelots of other reasons why
programs may crash, and users will hardly notice one or two more! However in a memory-
limited system, low memory situations happen sufficiently often that this approach would
seriougly affect the usability of the system, or even makes it unusable.

For example, the Word-O-Matic word processor provides voice output for each paragraph;
adds flashing colours on the screen to highlight errors in spdlling, grammar and political
correctness; and provides a floating window that continuously suggests sentence endings and
possible rephrasing. All this takes a great deal of memory, and frequently uses up all the
available RAM memory in the system.

Thereis some good news, however. First, some system requirements are more important than
others — so if you have to fail something, some things are better to fail at than others. Second,
provided your system can keep running failing to meet one requirement does not have to mean
that you will fail subsequent ones. Finally, you are unlikely to remain short of memory
indefinitely. When a systemisidle, its demands on memory will be less than when it is heavily
loaded.

In the Strap-1t-On PC, for example, it’s more important that the system keeps running, and
keeps its watch and alarm timers up to date, than that any fancy editing function actually works.
Within Word-O-Matic, retaining the text users have laboriously entered with the two-finger
keypad is more important even than displaying that text, and much more important than spelling
or grammar checking and suggesting rephrasing.

Therefore:. Ensure that running out of memory always leaves the systemin a safe state.

Ensure that for every memory allocation there is a strategy for dealing with failure before it
propagates through your program.

When a program detects that its memory allocation has failed, its first priority must be to get
back to a safe, stable state as soon as possible, and clean up any inconsistencies caused by the
failure. Asfar as possible this should happen without losing any data. Depending on what was
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being allocated when memory ran out, it may be enough to back out of the action that required
the extramemory. Alternatively you might reduce the functionality provided by one or more
components; or even shut down the component where the error occurred.

Processing Proce_ssmg
fails
X ____.=
Examples: ~ D'SPlaying Displaying Displaying still
text more text more text

Figure 1: Failing the action that required the extra memory

What is vitally important, however, is to ensure that from the user’s point of view, an action
succeeds completdly or fails completely, leaving the system in a stable state in either case. User
interfaces, and component interfaces should make it clear when an important activity that
affects the user has failed: if some data has been deleted, or an computation has not been
performed.

Once a program has reached a stable state, it should continue as best it can. Ideally it should
continue in a ‘ degraded mode', providing as much functionality as possible, but omitting less
important memory-hungry features. Y ou may be able to provide a series of increasingly
degraded modes, to cater for increasing shortages of memory. Components can implement a
degraded mode by hiding their memory exhaustion from their clients, perhaps accepting
requests and queuing them for later processing, or otherwise offering a lower quality service.
For example the Word-O-Matic’ s voice output module accepts but ignores commands from its
clientsinits ‘out of memory’ state, which makes programming its clients much simpler.

Processing Processing
fails

Figure 2: Failing to an Out of Memory state.

Finally, a system should return to full operation when more memory becomes available.
Memory is often in short supply while a system copes with high external loads, once the load
has passed its memory requirements will decrease. Users directly determine the load on
multiprocessing environments like M'S Windows and EPOC, so they can choose to free up
memory by closing some system applications. A component running in a degraded mode should
attempt to return to full operation periodically, to take advantage of any increase in available
memory.
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For example, when the Word-O-Matic fails to alocate the memory required for voice output of
a document, its display screen continues to operate as normal. |If the text checker fails, Word-
O-Matic doesn't highlight any problems; if the floating window fails it doesn’t appear, and the
rest of the program carries on regardiess. None of these fancier features are essential; and most
users will be quite happy with just a text display and the means to enter more text.

Consequences
Supporting partial failure significantly improves a program'’s usability. With careful design,
even the degraded modes can provide enough essential functionality that users can complete
their work. By ensuring the program can continue to operate within a given amount of memory,
partial failure decreases the program’s minimum memory requirements and increases the
predictability of those requirements.

Supporting partial failureincreases the program’s design quality — if you support partial failure
for memory exhaustion, it's easy to support partial failure (and other forms of failure handling)
for other things, like network faults and exhaustion of other resources. Systems that support
partial failure properly can be almost totally reliable.

However: Partial Failureis hard work to program, requiring programmer discipline to apply
consistently and considerable programmer effort to implement.

L anguage mechanisms that support partial failure— exceptions and similar — considerably
increase the implementation complexity of the system, since programmers must cater for
aternative control paths, and for releasing resources on failure.

Partial Failure tends to increase the global complexity of the systems, because local events —
running out of memory — tend to have global consequences by affecting other modules in the
system.

Supporting partial failure significantly increases the complexity of each module, increasing the
testing cost because you must try to test all the failure modes.

@, @, @,
0’0 0’0 0’0

Implementation
Consider the following issues when implementing Partial Failure:

1 Detecting Memory Exhaustion.

How you detect exhaustion depends on the type of MEMORY ALLOCATION You are using. For
example, if you are allocating memory from a heap, the operation that creates objects will have
some mechanism for detecting allocation failure. If you are managing memory allocation
yoursdf, such as using Fixep ALLocATION or allocating objects dynamically from a pool, then
you need to ensure the program checks to determine when the fixed structure or the memory
pool isfull. The MEMORY ALLOCATION chapter discusses this in more detail.

How you communicate memory exhaustion within the program depends on the facilities offered
by your programming language. In many languages, including early implementations of C and
C++, the only way to signal such an error was to return an error code (rather than the allocated
memory). Unfortunatdly, checking the value returned by every allocation requires a very high
leve of programmer discipline. More modern languages support variants of exceptions,
explicitly allowing functions to return abnormally. In most environments an out-of-memory
exception terminates the application by default, so components that implement PARTIAL FAILURE
need to handle these exceptions.
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2 Getting to a Safe State.

Once you have detected that you have run out of memory, you have to determine how to reach a
safe state, that is, how much of the system cannot continue because it absolutely required the
additional memory being available. Typically you will fail only the function that made the
request; in other situations the component may need a degraded mode, or, if a separate
executable, may terminate completely.

To determine how much of the system cannot be made safe, you need to examine each
component in turn, and consider their invariants, that is, what conditions must be maintained for
them to operate successfully [Hoare 1981, Meyer 1997]. If a components’ invariants are
unaffected by running out of memory, then the component should be able to continue running as
is. If theinvariants are affected by the memory failure, you may be able to restore a consistent
state by deleting or changing other information within the component. If you cannot restore a
component to a safe state, you have to shut it down.

If you haveto fail entire applications, you may be able to use APPLICATION SwWITCHING to get to
asafe state.

3 Releasing Resour ces.

A component that has failed to allocate the memory must tidy up after to ensure it has not left
any side effects. Any resources it allocated but can no longer use (particularly memory) must be
released, and its state (and that of any other affected components) must be restored to values
that preserveits invariants.

In C++, exceptions ‘unwind’ the stack between at hr ow statement and a cat ch statement
[Stroustrup 1997]. By default, all stack-based pointers between them arelost, and any
resources they own are orphaned. C++ exceptions guarantee to invoke the destructor on any
stack-based abject, however, so any abject on the stack can clean up in their destructors so that
they will betidied up correctly during an exception. The standard template classaut o_pt r
wraps a pointer and deletes it when the stack is unwound.
aut o_ptr<Networkl nterfaceC ass> p(new Networkl nterfaceC ass);
p- >doSonet hi ngWhi chCal | sAnException(); // the instance is deleted
Although Java has garbage collection, you still have to free objects (by removing all references
to them) and release external resources as the stack unwinds. Rather than using destructors, the
Java‘try..finally construct will executethe‘final Iy’ block whenever the‘t ry’ block
exits, either normally or abnormally. This example registers an instance of a CoMmMAND
[Gamma et al 1995] subclassinto a set, and then removes it from the set when an exceptioniis
thrown or the command' s execut e method returns normally.
Command cmd = new LongW ndedCommand() ;
set Of Act i veCommands. add(cnd) ;

try {
crd. execute();

}
finally {

set Of Acti veComands. renove(cnd) ;
}

EPOC, as an operating system for limited memory systems, has Partial Failure as one of its
most fundamental architectural principles [Tasker et al 2000]. Virtually every operation can to
fail dueto memory exhaustion; but such failureis limited as much as possible and never
permitted to cause a memory leak. EPOC’s C++ environment does not use C++ exceptions,
rather an operating system TRAP construct. Basically, acall tothel eave method unwinds the
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stack (using the C longjmp function), until it reach a TRAP harness call. . Client code adds and
removes items explicitly from a ‘ cleanup stack’, and then | eave method automatically invokes
a cleanup operation for any objects stored on the cleanup stack. Thetop-level EPOC system
scheduler provides a TRAP harness for all normal user code. By default that puts up an error
dialog box to warn the user the operation has failed, then continues processing.

Here' s an example of safe object construction in EPOC. [Tasker et a 2000]. A FACTORY
MEeTHOD [Gamma et al 1995], NewL, allocates a zero-filled (i.e. safe) object using
new( El eave), then calls a second function, Const r uct L, to do any operations that may fail.
By pushing the uninitialised object onto the cleanup stack, if Const ruct L failsthen it will be
deeted automatically. Once the new object is fully constructed it can be removed from the
cleanup stack.
Saf e(bj ect * Saf eObj ect:: NewL( CEi konEnv* aEnv )

Saf eObj ect* obj = new (ELeave) SafeObject( aEnv );

Cl eanupSt ack: : PushL( obj );

obj ->ConstructL();

Cl eanupSt ack: : Pop(); // obj is now OK, so renove it

return obj;

}
The CAPTAIN OATES pattern includes another example of the EPOC cleanup stack.
4. Degraded M odes.

Once you' ve cleaned up the mess after your memory allocation has failed, your program should
carry on running in a stable state, even though its performance will be degraded. For example:

Loading afont may fail; in this case you can use a standard system font.
Displaying images may fail; you can leave them blank or display a message.
Cached values may be unavailable; you can get the originals at some time cost.
A detailed calculation may fail; you can use an approximation.

Undo information may not be saved (usually after warning the user).

Wherever possible components should conceal their partial failure from their clients. Such
encapsulation makes the components easier to design and localises the effect of the failure to
the components that detect it. Component interfaces should not force clients to know about
these failure modes, although they can provide additional methods to allow interested clients to
learn about such failure.

Y ou can often use MULTIPLE REPRESENTATIONS O help implement partial failure.
5. Rainy Day Fund.

Just as you have to spend money to make money, handling memory exhaustion can itself
require memory. C++ and Java signal memory exhaustion by throwing an exception, which
requires memory to store the exception object; displaying a dialog box to warn the use about
memory problems requires memory to store the dialog box object. To avoid this problem, set
aside some memory for arainy day. The C++ runtime system, for example, is required to
preallocate enough memory to storethebad_al | oc exception thrown when it runs out of
memory [Stroustrup 1997]. Windows CE similarly sets aside enough memory to display an out-
of-memory dialog box [Boling 1998]. The Prograph visual programming language takes a more
sophisticated approach %4 it supplies arainy day fund class that manages a memory reserve
that is automatically released immediately after the main memory is exhausted [MacNeil and
Proudfoot 1985].
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Example

Thefollowing Java code illustrates a simple technique for handling errors with partial failure.
The method St r apFont . f ont attemptsto find a font and ensureit is loaded into main memory.
From the client’s point of view, it must always succeed.

We implement a safe state by ensuring that there is always a font available to return. Here, the

class creates a default font when it first initialises. If that failed, it would be a failure of process
initialisation — implemented by new throwing an uncaught cut of Meror yEr r or — preventing the

user entering any datain the first place.

class StrapFont {
static Font nyDefaul t Font = new Font("Dial og", Font.PLAIN, 12);

public static Font defaultFont() {
return myDef aul t Font;
}

The st r apFont . f ont method tries to create a new Font object based on the description

pri avt eGet Font method, which can run out of memory and throw and cut Of Menor yError. If
a new font object cannot be created then we return the default font. This mechanism also allows
safe handling of a different problem, such as when the font does not exist:

public static Font font(String name, int style, int size) {
Font f;

try {
f = privateGet Font(nane, style, size);

}
catch (BadFont Exception e) {
return defaul t Font();

}

catch (Qut Of MenoryError e) {
return defaul t Font();

}

return f;

}

The client must reload the font using St r apFont . f ont every timeit redraws the screen, rather
than caching the returned value; this ensures that when memory becomes available the correct
font will be loaded.

Known Uses

Partial Failureis an important architectural principle. If a system isto support Partial Failure, it
must do so consistently. A recent project evaluated a third-party database library for porting to
EPOC as an operating system service. Everything looked fine: the code was degant; the port
would betrivial. Unfortunately the library, designed for a memory-rich system, provided no
support for partial failure; all memory allocations were assumed either to succeed or to
terminate the process. In a service for simultaneous use by many EPOC applications that
strategy was unacceptable; memory exhaustion is common in EPOC systems, and the designers
couldn’t allow a situation where it would cause many applications to fail simultaneously. The
library was unsuitable because it did not support Partial Failure.

Degraded Modes are common in GUI applications. If Netscape fails to load a font due to
insufficient memory, it continues with standard fonts. Microsoft PowerPoint will use standard
fonts and omit images. PhotoShop warns the user and then stops saving undo information.
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At alower levd, if the Microsoft Foundation Class framework detects an exception while
painting a window, its default behaviour is to mark the window as fully painted. This allows
the application to continue although the window display may be incorrect; the window will be
repainted when it is subsequently changed by the application.

EPOC’s Word Processor makes its largest use of memory when formatting part of a page for
display. If thisfails, it enters an out-of-memory mode where it displays as much of the text as
has been formatted successfully. Whenever a user event occurs, (scrolling, or a redisplay
command) Word attempts to reformat the page, leaves its degraded mode if it is successful.
EPOC' s architecture also has an interesting policy about safe states. The EPOC application
framework is event-driven; every application runs by receiving repeated function calls from a
central scheduler. Every applicationisin a safe statewhen it is not currently executing from
the scheduler, so any EPOC application can fail independently of any other [Tasker et al 2000].

See Also

APPLICATION SWITCHING can fail an entire application and begin running another application,
rather than terminating an entire system of multiple applications. MuULTIPLE REPRESENTATIONS
can also support partial failure, by replacing standard representations with more memory
efficient designs.

An alternative to failing the component that needed the memory is to use the CAPTAIN OATES
pattern and fail a different and less important component. The MEMORY ALLOCATION chapter
describes a number of strategies for dealing with allocation failures, such as deferring requests,
discarding information, and signalling errors.

Ward Cunningham’s CHECK s pattern language discusses several ways of communicating partial
failure to the user. [Cunningham 1995]. Professional Symbian Programming [Tasker et al
2000], More Effective C++ [Meyers 1996] and Exceptional C++ [Sutter 2000] describein
detail programming techniques and idioms for implementing Partial Failure with C++
exceptions.
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Captain Oates
Also known as. Cache Release.

How can you fulfil the most important demands for memory?
Many systems have components that run in the background.
Many applications cache data to improve performance

User’s care more about what they are working on than background activities the system
is doing for its own sake.

To the operating system all memory requirements appear equal. To the user, however, some
requirements are more equal than others [Orwell 1945].

For example, when someone is using the Strap-1t-On PC’s word processor to edit a document,
they don’t care what the fractal screen background looks like. You can increase a system's
usability by spending scarce resources doing what users actually wants.

Many systems include background components, such as screen savers, chat programs,
cryptoanalysis engines [Hayes 1998], or Fourier analyses to search for extraterrestrial
intelligence [Sullivan et a 1997]. Systems also use memory to make users' activities quicker or
more enjoyable, by downloading music, caching web pages, or indexing file systems. Though
important in the longer term, these activities do not help the user while they are happening, and
take scarce resources from the urgent, vital, demands of the user.

Therefore: Sacrifice memory used by less vital components rather than fail more important tasks.

Warn every component in the system when memory is running out, but while there is still some
space left. When a component receives this warning it should release its inessential memory, or
in more extreme situations, terminate activities.

If thereis no support for signalling memory conditions, processes can keep track of the free
memory situation by regular polling, and free inessential resources (or close down) when
memory becomes short.

For example when the Word-O-Matic is about to run out of memory the I P networking stack
empties its cache of 1P address maps and the web browser empties its page cache. Background
service processes like the ‘ Fizzy™" fractal generator automatically closes down. Consequently,
the word processor’s memory reguirements can be met. Figure XXX illustrates a system-wide
implementation of the Captain Oates pattern:
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Figure 3: The Memory L ow Event
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Figure 4: Result of the Memory L ow Event

The name of this pattern celebrates a famous Victorian explorer, Captain Lawrence ‘ Titus'
Oates. Oates was part of the British team led by Robert Falcon Scott, who reached the South
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Pole only to discover that Roald Amundsen’s Norwegian team had got there first. Scott’s team
ran short of supplies on theway back, and a depressed and frosthitten Oates sacrificed himself
to give therest of his team a chance of survival, walking out into the blizzard leaving a famous
diary entry: “1 may be sometime’. Oates' sacrifice was not enough to save therest of the team,
whose remains were found in their frozen camp the next year. Thirty-five kilograms of rock
samples, carried laboriously back from the Pole, were among their remains [Limb and
Cordingley 1982; Scott 1913].

Consequences
By allocating memory whereit is most needed this pattern increases the systems usability, and
reduces its memory requirements. Programs releasing their temporary memory also increase the
predictability of the system’s memory use.

However: Captain Oates requires programmer discipline to consider voluntarily releasing resources.
Captain Oates doesn't usually benefit the application that implements it directly, so the
motivation for a development team to implement it isn't high —there needs to be strong cultural
or architectural forces to make them do so. The pattern also requires programmer effort to
implement and test.

Captain Oates introduces coupling between otherwise unrelated components, which decreases
the predictability of the system. Releasing resources can reduce the program’ stime
performance. Programs need to be tested to see that they do release resources, and that they
continue to perform successfully afterwards. Because many programs must handle the memory
low signal, Captain Oates is easier with operating system support. Thisis another global
mechanism that introduces local complexity to handle the signal.

@ @ @
0’0 0’0 0’0

Implementation
Themain point of the Captain Oates pattern is that it releases memory from low priority
activities so that high priority activities can proceed. It isinappropriate for a component to
release memory if it is supporting high-priority activities. Y et mechanisms that detect low
memory conditions areindiscriminate and notify all components equally. So how can you work
out what components to sacrifice?

A user interface application can usually determine whether is the current application, i.e.
whether it has the input focus so users can interact with it. If so, it should not sacrifice itself
when it receives low memory warnings.
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A background process, though, cannot usually ask the system how important they are. InMS
Windows, for example, high priority threads block waiting for some events — the Task
manager has a high priority when waiting for Ctrl+Alt+Dd key strokes. When the Task
Manager detects an event, however, it changes its priority down to a normal. So, calling

Get ThreadPri ori ty cannot give a trueindication of how important the task is and whether it’'s
being used.

Most processes, though, can determine how important they are from other information. A
component managing network connections, for example, could check whether it had any active
connections. Other background processes may not even have that information; a web page
cache, for example, may have no direct information about the applications that it supports.
Such processes, however must not be directly interacting with the user (otherwise they would
have more information about users' activities) and so can usually quite safely release inessential
resources when required.

1. Detecting L ow Memory Conditions.

Many operating systems provide events that warn applications when memory islow. MS
Windows and M'S Windows CE send Wy COMPACTI NGand Wv_HI BERNATE messages to all
windows (though not, therefore, to background processes) to warn them that the system memory
is getting low [Boling 1998,Microsoft 1997]. Rather than send events, some operating systems
or language runtimes call back to system components when memory is low — one example,
C++'snew_handl er, isdiscussed in the PARTIAL FAILURE pattern.

As an alternative, if the system provides functions to show how much memory isin use, then
each component can poll to seeif memory is low, and release memory when it is. Polling can be
unsatisfactory in battery-powered machines, however, since the processor activity uses battery
power.

2. Handling low memory events.

When alow memory even occurs, it’s useful if each component can determine how short of
memory the systemis. Inthe Java JDK 1.2 environment, the runtime object’s

get Menor yAdvi ce() call answers one of four modes: ‘ green’ meaning there' s no shortage,
‘yellow’ then ‘orange’ meaning memory is getting low, and ‘red’ meaning memory is critically
low. MSWindows event, WM_COMPACTING, sends an indication of the proportion of
time spent paging memory: 1/8 is equivalent to ‘yelow’, and is when the message is first sent;
anything over 1/4 is critically low [Microsoft 1997].
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3. Good Citizenship.

Perhaps the simplest, and often the easiest, approach is for each process to voluntarily give up
inessential resources they are not really using. By observing a simple timer, you can release
latent resources after a specific time, regardless of the memory status of the rest of the system.
For example, the EPOC Web browser loads dynamic DLLs to handle specific types of Web
data. If a particular type of data occurs once, it may recur almost immediately, so the Browser
DLL loader cacheseach DLL. If the DLL isn't reused within a few seconds, however, the
loader releases it.

Example

This C++ example implements a piece of operating system infrastructure to support asimple
Captain Oates mechanism for the EPOC operating system. The Captain Oates application runs
in the background and closes applications not currently in use when memory becomes low.
Since closing an EPOC application automeatically saves its state (a requirement of the PC-
synchronisation mechanisms), this does not lose any data. Transient editing state, such as the
cursor position in a document or the current item displayed in a file browser, is not maintained,

however.
Thefunctionality isin class Coat esTer ni nat or, which is as follows (omitting function
declarations):
class COatesTerm nator : public CBase {
private:
RNotifier iPopupDi al ogNotifier; /1 Provides user screen output
CPeriodic* iTiner; // Timer mechani sm

CEi konEnv* i Applicati onEnvironnent; // User 1/0O Handler for this app.

enum {
EPol | Peri odl nSeconds = 10, /! How often to check nmenory
EDanger Percentage = 5 }; /1 Cl ose applications when |ess free

/ menory than this.
H
There are various construction and initialisation functions (not included here) to set up the
periodic timer and dialog notifier.

The core of the application, however, isthe Ti mer Ti ckL function that polls the current memory
status and closes applications when memory islow. The free memory reading can be
deceptivey low if other applications have allocated more memory then they are using. If free
memory appears to be low on afirst reading, we compress all the memory heaps; this claws
back any free pages of memory at the end of each heap. Then a second reading will measure
all free memory accuratdy. If the second reading is also low, we call G oseAnAppl i cat i onL to
close an application.

voi d COatesTerm nator:: TimerTickL() {
if ( GetMenoryPercentFree() <= EDanger Percentage ||
(User:: ConpressAl | Heaps(),
Get MenoryPercent Free() <= EDanger Percentage )) {
Cl oseAnApplicationL();
}
}

Cl oseAnAppl i cati onL must first select a suitable application to terminate — we do not want
to close the current foreground application, the system shell, or this process. Of the other
candidates, we' Il just close the one lowest in the Z order. Applications are identified to the
system as ‘window groups (WG). To find the right window, wefirst get the identifiers of the
window groups we don't want to close (f ocusWy, def aul t W, t hi s\Wg), get the
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W ndowG ouplLi st, then work backwards through thelist, and close the first suitable
application we find.

Note also the use of the Cl eanupSt ack, as described in PARTIAL FAILURE. We push the array
holding the w ndowGr oupLi st onto the stack when it is allocated, and then remove and destroy
it as the function finishes. If the call to get the window group suffers an error, we immediately
| eave thed oseAnAppl i cati onL function, automatically destroying the array asit is on the

cleanup stack.
voi d COatesTerm nator::Cl oseAnApplicationL() {
RWsSessi on& wi ndowSer ver Sessi on = i Applicati onEnvironnent - >WSessi on();

TInt foregroundApplicati onWs = w ndowSer ver Sessi on. Get FocusW ndowGr oup() ;
TInt systentShel | Applicati onWG = wi ndowSer ver Sessi on. Get Def aul t Omi ngW ndow() ;
TInt thisApplicati onWs = i Appl i cati onEnvi ronment - >RootWn().ldentifier();

TInt nApplications=wi ndowSer ver Sessi on. NumW ndowG oups(0) ;
CArrayFi xFl at <TlI nt >* applicationList=
new (ELeave) CArrayFi xFl at <Tl nt >(nApplications);
Cl eanupSt ack: : PushL( applicationList );
User:: Leavel fError( w ndowServer Sessi on. WndowG ouplLi st (0, applicationList) );
TInt applicati onWG=0;
Tint i= applicationList->Count();
for (i--; i>=0; i--) {
applicati onWG = applicationList->At( i );
if (applicationWs != thisApplicationWG &&
applicati onWG ! = systenthel | Applicati onWG &&
applicationWs ! = foregroundApplicati onWg)
br eak;
}
If wefind a suitable candidate, we use a standard mechanism to terminate it cleanly. Note that
_LI T defines a string literal that can be stored in ROM — see the READ ONLY MEMORY pattern.
if (i >=0) {
TApaTask task(w ndowServer Sessi on);
task. Set Wyl d(appl i cati onWG) ;
task. EndTask();
_LIT( KMessage, "Application term nated" );
i PopupDi al ogNotifier.InfoPrint( Kvessage );

{31 eanupSt ack: : PopAndDestroy(); // applicationList
}
This implementation has the disadvantage that it requires polling, consuming unnecessary CPU
time and wasting battery power. A better implementation could poll only after writes to the
RAM-based file system (straightforward), after user input (difficult), or could vary the polling
frequency according to the available memory.

Known Uses
The MS Windows application * ObjectPLUS’, a hypercard application by ObjectPLUS of

Boston, responds to the WM_COMPACTING message. As the memory shortage becomes
increasingly critical, it:

Stops playing sounds
Compresses images
Removes cached bitmaps taken from a database

Though this behaviour benefits other applications in the system, it also benefits the HyperCard
application itself by releasing memory for other more important activities. By implementing the
behaviour in the Windows event handler, the designers have kept that behaviour architecturally
separate from other processing in the application.
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The Apple Macintosh memory manager (discussed in CoMmPACTION) supports “ purgeable
memory blocks” — that the memory manager reclaims when memory is low [Apple 1985].
They are used for REsource FiLEs, and file system caches, and dynamically allocated program
memory.

M S Windows CE Shdll takes a two phase approach to managing memory [Microsoft 1998,
Boling 1998]. When memory becomes low, it sends a Wv_HI BERNATE message to every
application. A CE application should respond to this message by releasing as many system
resources as possible. When memory becomes even lower, it sends the message WM CLCSE to
the lowest priority applications, asking those applications to close — like EPOC, Windows CE
requires applications to save their state on Wv_CLOSE without prompting the user. Alternatively,
if more resources become available, applications can receive the WM_ACTI VATE message,
requesting them to rebuild the internal state they discarded for Wvi_HI BERNATE.

A number of distribued internet projects take advantage of Captain Oates by running as
screensavers. When a machineis in use, the screensavers do not run, but after a machineisidle
for afew minutes the screensaver uses the idle processor to search for messages from aliens
[Hayes 1998] or crack encrypted messages [Sullivan et al 1997].

See Also

Where CarTAIN OATES describes what a program should do when another process in the system
runs out of memory, PARTIAL FAILURE describes what a process should do when it runs out of
memory itself. Many of the techniques for PARTIAL FAILURE (Such as MuULTIPLE
REPRESENTATIONS and PROGRAM CHAINING) are also appropriate for CAPTAIN OATES.

Fixep ALLOCATION describes a simple way to implement aform of CApTAIN OATES, where each
activity is merdly a data structure — simply make new activities overwrite the old ones.

Scott and his team are popular heroes of British and New Zealand culture. See ‘ Captain Oates:
Soldier and Explorer’ [Limb and Cordingley 1982], and ‘ Scott’s Last Expedition: The
Personal Journals of Captain R. F. Scott, R.N., C.V.O., on his Journey to the South Pole.’
[Scott 1913].
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Read-Only Memory
Also known as; Usethe ROM

What can you do with read-only code and data?
Many systems provide read-only memory as wdll as writable memory
Read-only memory is cheaper than writable memory
Programs do not usually modify executable code.
Programs do not modify resource files, lookup tables, and other pre-initialised data.

Programs often have lots of read-only code and data. For example, the Word-O-Matic word-
processor has a large amount of executable code, and large master dictionary files for its
spelling checker, which it never changes. Storing this static information in main memory will
take memory from data that does need to change, increasing the memory requirements of the
program as awhole.

Many hardware devices ¥ particularly small ones % support read-only memory as well as
writable main memory. The read-only memory may be primary storage, directly accessible
from the processor, or indirectly accessible secondary storage. A wide range of technologies
can provide read-only memory, from semiconductor ROMs and PROMS of various kinds,
through flash ROMs, to read-only compact discs and even paper tape. Most forms of read-only
memory are better in many ways than corresponding writable memory — simpler to build, less
expensive to purchase, morerdiable, more economical of power, dissipating less heat, and more
resistant to stray cosmic radiation.

Therefore: Store read-only code and data in read-only memory.

Divide your system code and data into those portions that can change and those that never
change. Store the immutable portions in read-only memory and arrange to re-associate them
with the changeable portions at run-time.

Word-O-Matic's program’s code, for example, is contained in ROM memory in the Strap-1t-On
portable PC. Word-O-Matic's master dictionary and other resource files are stored in in read-
only secondary storage (flash ROM); only user documents and configuration files are stored in
writeable memory.

Consequences

This pattern trades off writable main storage for read-only storage, reducing the memory
requirements for main storage and making the it easier to test.. Read-only storage is cheaper
than writable storage, in terms of financial cost, power consumption and reliability. If the
system can execute programs directly from read-only memory, then using read-only memory
can decrease the system’ s start-up time.

Although you may need to copy code and data from read-only secondary storage to main
memory, you can delete read-only information from main memory without having to save it
back to secondary storage. Because they cannot be modified, read-only code and data can be
shared easily between programs or components, further reducing the memory requirements of
the system as awhole.

However: programmer effort is needed to divide up the program into read-only and writable portions,
and then programmer discipline to stick to the division. The disctinction between read-only
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and writeable inforamtion is fundamentally a global concern, although it must be made locally
for every component in the program.

Code or data in read-only memory is more difficult to maintain than information in writable
secondary storage. Often, the only way to replace code or data stored in read-only memory is to
physically replace the hardware component storing the information. Updating flash memory,
which can be erased and rewritten, usually requires a complicated procedure particuarly if the
operating system is stored in the memory being updated.

@ @, @,
0’0 0’0 0’0

Implementation

Creating a‘ROM Image (a copy of thefinal code and data to be stored into read-only
memory)is invariably a magical process, requiring major incantations and bizarre software
ingredients that are specific to your environment. Across most environments, however, there
are common issues to consider when using read-only memory.

1. Storing Executable Code.

If you can run programs directly from read only memory, then you can use it to store executable
code. This generally poses two problems. how should the code be represented in read-only
memory, and how can it get access to any data it needs?

Most environments store programs as object files % such as executables and dynamic linked
libraries % that do not refer to any absolute addresses in memory, instead containing symbolic
references to other files or libraries. Before object files can be executed, the operating system’s
run-time loader must bind the symbalic references to create completely executable machine
code.

To store this executable code in read-only memory you need an extra toal, the ‘ROM builder’,
that does the job of the run-time loader, reading in object files and producing a ROM Image. A
ROM Builder assigns each object file a base address in memory and copies it into the
corresponding position in the ROM image, binding symbolic references and assigning writable
memory for heap memory, static memory, and static data. For example, the EPOC system
includes a Java ROM builder takes the ‘jar’ or ‘class’ files, and loads them into a ROM image,
mimicking the actions of the Java run-time class loader.
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If the system starts up by executing code in read-only memory, then the ROM image will also
need to contain initialisation code to allocate main memory data structures and to bootstrap the
whole system. The ROM Builder can know about this bootstrap code and install it in the
correct placein the image.

2. Including Data within Code.

Most programs and programming languages include constant data as well as executable code ¥
if the codeis being stored in read-only memory, then this data should accompany it. To do this
you need to persuade the compiler or assembler that the datais truly unchangeable.

The C++ standard [Ellis and Stroustrup 1990], for example, defines that instances of objects
can be placed in the code segment % and thus in read-only memory ¥ if:

Theinstanceis defined to beconst , and

It has no constructor or destructor.

Thus
const char nyString[] = "Hello"; /1l I'n ROM
char* nyString = "Hello"; /1 Not in ROM according to the Standard.
const String myString( "Hello" ); // Not in ROM since it has a constructor

In particular you can create C++ data tables that can be compiled into ROM:
const int nyTable[] ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // In ROM

Note that non-const C++ strings are generally not placed in the code segment, since they can
be modified, but some compilers support flags or #pr agma declarations to change this
behaviour.

The EPOC system uses a combination of C++ macros and template classes to create instances
of strings in read-only memory, containing both a length and the text, as follows:
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template <TInt S> class TLitC{
/1 Various operators...
public:
int i TypeLength; // This is the structure of a standard EPOC string
char iBuf[S];
H

#define _LIT(nane,s) const static TLitC<sizeof (s)> name={sizeof(s)-1,s}

This alows EPOC code to define strings in ROM using the _LI T macro:

_LIT(C MyString, "Hello World" );

User::InfoPrint( MyString ); // Displays a nmessage on the screen.
Thelinker filters out duplicate constant definitions, so you can even put _LI T definitionsin
header files.

2.1. Read-only objectsin C++. C++ compilers enforceconst asfar as the bitwise state of
the abject is concerned: const member functions may not change any data member, nor may a
client delete an object through aconst pointer [Stroupstrup 1997]. A well-designed class will
provide logical const -ness by ensuring that any public functionis const if it doesn’t change
the externally visible state of the object. For example, the simple String class below provides
both a‘logically const’ access operator, and a non-const one. A client given using aconst
St ring& variable can use only the former.

class String {

public:
/'l Constructors etc. not shown...
char operator[]( int i ) const { return rep[i]; }
char& operator[]( int i ) { returnrep[i]; }
private:
char* rep;

b
C++ supports passing parameters by value, which creates a copy of the shared object on the
stack. If the object islarge and if the function does not modify it, it's common C++ styleto
SHARE the representation by passing the object asaconst reference. Thus:

voi d function( const String& p );

is usually preferableto

void function( String p );
becauseit will use less stack space.

2.2. Read-only objectsin Java. Javalacks const, and so is more restrictive on what data can
be stored with the code in read-only memory % only strings and single primitive values are
stored in Java constant tables. For example, the following code

final int nyTable[] ={ 1, 2, 3, 4, 5, 6, 7, 8 9, 10}; // Don't do this!

compiles to avery large function that constructs myTabl e, assigning valuesto an array in main
memory element by element. Storing data for Java programs in read-only memory is thus quite
complex. You can encode the data as two-byte integers and storein a string; use C++ to
manage the data and access it via the Java Native Interface; or keep the data in aresourcefile
and usefile access calls [Lindholm and Y dlin 1999].

3. Static Data Structures. Some programs require relatively large constant data structures, for
example:

Encryption algorithms, such as the US Data Encryption Standard (DES).

Mathematical algorithms, such as log, sine and cosine functions.

© 1999 Charles Weir, James Noble Page 37



Read-Only Memory UNTITLED by Weir, Noble

State transition tables, such as those generated by tools to support the Shlaer-Médlor
object-oriented methodology [1991].

These tables can be quite large, so its usually not a good idea to store them in main memory, but
since they are constant, they can be moved to read-only memory. Managing the development of
these data structures can be quite alarge task, however.

If the table data changes often during the development process, the best approach isto usea
tool to generate the table as a separate file that is incorporated by the ROM Image builder. If
the data changes very rardly, then it's usually easiest to copy the table manually into the code,
and modify it or the surrounding code to ensure the compiler will placeit into read-only
memory.

4. Read-Only File Systems.

Some environments can treat read-only memory as if it were a file system. This has the
advantage that file system structures can organise the read-only data, and that applications can
read it through the normal file operations, although they cannot modify it. For example, EPOC
supports alogical file system (Z:), normally invisible to users, which is stored in read-only
memory and constructed by the EPOC ROM Builder. All the Resource Files for ROM-based
applications are stored in this file system.

File system access is usually slower than direct memory access. If read-only memory can be
mapped into applications’ address spaces, the datain a ROM filing system can be made
available directly, as an optimisation. For example, the EPOC Bitmap Server uses the function
User: : | sFi | el nROMtO access bitmap data directly from ROM.

5. Version Control

Different versions of ROM images will place the same code or data at different addresses. You
need to provide some kind of index so that other software in the system can operate with
different ROM versions. For example, ROM images often begin with atable of pointers to the
beginning of every routine and data structure: external software can find the correct address to
call by indirection through this table [Smith 1985].

The Hook s pattern describes how you can store the table in writable memory, so that routines
can be extended or replaced with versions stored in writable memory.

Example

The following example uses a read-only lookup table to calculate the mathematical sine function
for a number expressed in radians. Because the exampleis in Java, we must encode the table as
a string (using hexadecimal values) because numeric arrays cannot be stored in Java constant
tables. The following code runs on our development machine and calculates 256 values of the
sine function as sixteen bit integers.

final int nPoints = 256;

for (int i = 0; i<nPoints; i++) {
doubl e radians =i * Math.Pl / nPoints;
int tableValue = (int)(Mth.sin(radians) * 65535);

System out. print("“\\u"+l nteger.toHexString(tablevalue));
}

This code doesn’t produce quite correct Java: afew of the escape codes at the start and end lack
of the table leading zeros, but it’s easier to correct this by hand than to spend moretime on a
program that’s only ever run once.
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Thesi n function itsdf does linear interpolation between the two points found in the table. For
brevity, we ve not shown the whole table:
static final String sinValues = "\u0000\u0324\u0648. . .\u0000";

public static float sin(float radians) {
float point = (radians / (float)Math.Pl) * sinValues.length();

int lowal = (int) point;
int hival = lowal + 1;
float |lowval Sin = (float)sinVal ues.charAt(lowal) / 65535;

float hiVal Sin | oat) si nVal ues. char At (hiVal) / 65535;
float result =

+ (point -
return result;

oat)hival - point) * |owal Sin

= (f
((1SI
(float)l owal) * hiValSin;

}

On afast machine with a maths co-processor thissi n function runs orders of magnitude more
slowly than the native Mat h. si n() function! Nevertheless this program provides an accuracy
of better than 1 in 20,000, and illustrates the lookup table technique. Lookup tables are widdy
used in environments that don’t support mathematics libraries and in situations where you
prefer to use integer rather than floating point arithmetic, such as graphics compression and
decompression on low-power processors.

@,
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Known Uses

Most embedded systems % from digital watches and washing machine controllers to mobile
telephones and weapons systems ¥4 keep their code and some of their data in read-only
memory, such as PROMs or EPROMSs. Only run-time data is stored in writable main memory.
Palmtops and Smartphones usually keep their operating system code in ROM, along with
applications supplied with the phone. In contrast, third party applications live in secondary
storage (battery backed-up RAM) and must be loaded into main memory to execute. Similarly,
many 1980’ s home computers, such as the BBC Micro, had complex ROM architectures
[Smith 1985].

Even systems that load almost all their code from secondary storage still need some ‘ bootstrap’
initialisation codein ROM to load the first set of instructions from disk when the system starts
up. PCs extend this bootstrap to be ROM-based Basic Input Output System (BIOS), which
provides generic access to hardware, making it easy to support many different kinds of
hardware with one (DOS or Windows) operating system [Chappd 1994].

See Also

Data in read-only storage can be changed using Copy-oN-wRITE and Hooks. COPY-ON-WRITE
and Hook s also allow some kinds of infrequently changing (but not constant) data to be moved
to read only storage.

Anything in read-only storageis suitable for SHARING between various programs and different
components or for moving to SECONDARY STORAGE.

PacING systems often distinguish between read-only pages and writable pages, and ignore or
prevent attempts to write to read-only pages. Several processes can safely share a read-only
page, and the paging system can discard it without the cost of writing it back to disk.
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Hooks
Also known as: Vector table, Jump table, Patch table, Interrupt table.

How can you change information read-only storage?
You are using read-only memory
It is difficult or impossible to change read-only memory once created.
Code or data in read-only memory needs to be maintained and upgraded.

Y ou need to make additions and relatively small changes to the information stored in
read-only memory.

The main disadvantage of read-only storageisthat it is read-only. The contents of read-only
memory are set at manufacturing time, or possibly upgrade, time; whereupon they are fixed for
eternity. Unfortunatdly, there are always bugs that need to be fixed, or functionality to be
upgraded. For example, the released version of the Word-O-Matic codein the Strap-1t-On’s
ROM israther buggy, and fixes for these bugs need to be included into existing systems. In
addition, Strap-1t-On’s marketing department has decreed that it needs an additional predictive
input feature, to automatically complete users’ input and so reduce the number of input
keystrokes [Darragh, Witten, and James 1990].

If theinformation is stored in partly writable storage, such as EPROMS, your could issue a
completely new ROM image and somehow persuade all the customers to invest the time and
risk of upgrading it. Upgrading ROMs is painful for your customers, and often commercially
impractical if you don't have control over the whole system. Moreover, aredeased ROM is
unlikely to be so badly flawed as to demand a complete re-rdease. Often the amount of
information that needs to be changed is small, even for significant changes to the system as a
whole.

Y ou could ignore the existing read-only memory, and store a new copy of the information in
writable main memory. Even if thereis enough writable memory in the system to hold a full
copy of the contents of the read-only memory, you generally cannot afford to dedicate large
amounts of main memory to storing copies of the ROM.

Therefore: Access read-only information through hooks in writable storage and change the hooks to
give theillusion of changing the information..

The key to making read-only storage extensibleis to link your system together through
writeable memory, rather than read-only memory. When designing a system that uses read-only
storage, do not access that storage directly. Allocate a“hook’ in writable memory for each entry
point (to a function, component, data structure, or resource) that is stored in read-only memory,
and initialise each hook to refer to its corresponding entry point. Ensurethat every access to the
entry point is via the writable hook % all accesses, whether from read-only memory or writable
memory should use the hook.

To update the read-only memory you copy just that part of the memory you need to modify, and
then make the required changes to the copy. Then, you can store the modified copy in writable
store, and set the hooks to point to the modified portion. The modified portion can call other
parts of the program, if necessary again by indirection through the hooks.
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For example, the Strap-1t-On was carefully designed so that every magjor function is called
indirectly through a table of hooks that are stored in RAM and initialised when the system is
booted. Bug fixes, extensions, and third party code can be loaded into the system’s main
memory and the hooks changed to point to them. When an application uses a system function,
the hooks ensures it finds the correct piece of code ¥ either the original codein ROM, or the
new codein RAM.

Consequences

Hooks let you extend read-only storage, and by making read-only storage easier to use, can
reduce the program’ s writable memory requirements.

Providing good hooks increases the quality of the program’s design, making it easier to
maintain and extend in future. A ROM-based operating system that provides good hooks can
enormously reduce the programmer effort required to implement any specific functionality.

However: Hooks require programmer discipline to design into programs and then to ensure they are

used. They also increases the testing cost of the program, because the hooks have to be tested to
seeif they are called at theright times.

Indirect access via hooks is slower than direct access, reducing time performance; and the hook
vectors take up valuable writable storage, slightly increasing memory requirements. Hook
vectors are great places to attack system integrity, as any virus writer will tell you, so using
hooks can make the system less rdiable.

@
0’0 0 0

Implementation

Consider the following issues when implementing the Hooks pattern:

1. Calling Writable Memory from Read-Only Memory. You can't predict the addresses or
entry points of code and data stored in main memory ¥ indeed, because the memory is writable
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memory addresses can change between versions of programs (or even as a program is running).
This makes it difficult for codein ROM to call code or rely on data that is stored in writable
memory.

Y ou can address this by using additional hooks that are stored at known addresses in main
memory % hooks that point to code and data in main memory, rather than into read-only
memory. Codein ROM can follow these hooks to find the addresses of the main memory
components that it needs to use.

2. Extending Objectsin Read-Only Memory.

Object-oriented environments associate operations with the objects they operate upon — called
“dynamic dispatch’, ‘message sending’ or ‘ad-hoc polymorphism’. You can use this to
implement rather more flexible hooks. For example, both EPOC and Windows CE support
C++ derived classes stored in RAM that inherit from base classes stored in ROM. When the
system calls a C++ virtual function, the code executed may be ROM or in RAM depending on
the class of the object that the function belongsto. The compiler and runtime system ensures
that the C++ virtual function tables (vt bl s) have the correct entry for each function, so the
vt bl s behave like tables of hooks [Ellis and Stroustrup 1990, ]. ROM programmers can use
many object-oriented design patterns (such as FAcTorRY METHOD and ABSTRACT FACTORY) tO
implement extensible code [Gamma et al 1995] because the inheritance mechanism does not
really distinguish because ROM and RAM classes.

This works equally well in a Java implementation. Java' s dynamic binding permits ROM-based
code to call methods that may bein ROM or RAM according to the object’s class.

3. Extending Data in Read-Only Memory.

Replacing ROM-based data is simplest when the data exists as filesin a ROM filing system. In
this casg, it is sufficient to ensure that application code looks for files in other file systems
before the ROM one. EPOC, for example, scans for resource files in the same directory on
each drivein turn, taking the drive letters in alphabetic order. Drive Z, the ROM drive, is
therefore scanned last.

Y ou can also use accessor functions to use data structures stored in read-only memory.
Provided these functions are called through hooks, you can modify the data therest of the
system retrieves from read-only memory by modifying these accessor functions.

If you access read-only memory directly, then you need programmer discipline to write code
that can use both ROM and RAM simultaneously. When reading data, you should generally
search the RAM first, then the ROM; when writing data, you can only writeinto the RAM.
This ensures that if you replace the ROM data by writing to RAM, the updated version in RAM
will be found before the original in ROM.

Example

The Strap-1t-On’ s operating system is mostly stored in ROM, and accessed via a table of hooks.
The operating system can be updated by changing the hooks. This example describes C code
implementing the creation of the hook table and intercepting the operating system function

memal | oc, that allocates memory.

The basic data typein the Strap-1t-On operating systemis called asysobj — it may bea
pointer to ablock of memory, a single four-byte integer, two two-byte short integers and so on.
Every system call takes and returns a single sysobj , so the hook tableis essentially a table of
pointers to functions taking and returning sysobj s.
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typedef voi d* sysobj;
const int SI O HOOK_TABLE_SI ZE = 100;
typedef sysobj (*sio_hook function) (sysobj) ;

si o_hook_function sio_hook_tabl e[ SIO HOOK_TABLE_SI ZE] ;

As the system begins running, it stores a pointer to the function that implements meral | oc in
the appropriate place in the hook table.

extern sysobj sio_nenmalloc( sysobj );

const int SIO MEMALLOC = O0;

si o_hook_t abl e[ SIO MEMALLOC] = sio_nenall oc;
Strap-1t-On applications make system calls, such as the function nenal | oc, by calling
‘trampoline functions' that indirect through the correct entry in the hook table.

voi d *nmemal | oc(size_t bytesToAllocate) {
return (voi d*)sio_hook_tabl e[ SIO MEMALLQC] ((sysobj )byt esToAl | ocate);

1. Changing a function using a hook

To change the behaviour of the system, say to implement a memory counter, we first allocate a
variable to remember the address (in read-only memory) of the original implementation of the
memal | oc call. We need to preserve the original implementation because our memory counter
will just count the number of bytes requested, but then needs to call the original function to
actually allocate the memory.

static sio_hook_function original _nmemalloc = 0;

static size_t memcounter = 0;

We can then write a replacement function that counts the memory requested and calls the
original version:
sysobj nmem counter_menal | oc(sysobj size) {
mem counter += (size_t)size;
return original_memalloc( size );
}
Finally, we caninstall the memory counter by copying the address of the existing system
memal | oc from the hook tableinto our variable, and install our new routine into the hook table.
original _nmemall oc = sio_hook_tabl e[ SI O MEMALLOC] ;
si o_hook_t abl e[ SIO MEMALLOC] = nmem counter_nenal | oc;
Now, any callsto memal | oc (in client code and in the operating system, as ROM also uses the
hook table) will first be processed by the memory counter code.

@, @,
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Known Uses

The Mac, BBC Micro, and IBM PC ROMs are all reached through hook vectorsin RAM, and
can be updated by changing the hooks. Emacs makes great use of hooks to extend its
executable-only code % this way, many users can share a copy of the Emacs binary, but each
one have their own, customised environment [Stallman 1984]. NewtonScript allows objects to
inherit from read-only objects, using both hooks and copy-on-write so that they can be modified
[Smith 1999].

The EPOC ‘Time World' application has a large ROM-based database of world cities and
associated time zones, dialling codes and locations. It also permits the user to add to the list; it
stores new citiesin a RAM database similar to the pre-defined ROM one, and searches both
whenever the user looks for a city.
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EPOC takes an alternative approach to updating its ROM. Patches to ROMs are supplied as
device drivers that modify the virtual memory map of the system, to map one or more new
pages of code in place of the existing ROM memory. Thisis awkward to manage as the new
code must occupy exactly the same space as the code, and exactly the same entry points at
exactly the same memory addresses.

See Also

CoPY-ON-WRITE iS @ complementary technique for changing information in READ-ONLY STORAGE,
and Copy-oN-wRITE and Hook s can often be used together.

Using Hook s in conjunction with READ-ONLY storage is a special instance of the general use of
hooks to extend systems one cannot change directly. Many of the Object-Oriented Design
Patterns [Gamma et a 1995] patterns are also concerned with making systems extensible
without direct changes.

Hook sform an important part of the hot-spot approach to systems design [Pree 1995].
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